分析 作OE⊥BC,OF⊥AC,根据垂直定义得出∠C=∠CFO=∠OEC=90°,即可推出四边形CFOE是矩形,根据角平分线性质求出OE=OF=OP,即可推出矩形CFOE是正方形,设OE=OP=OF=x,则AP=AF=5-x,BP=BE=12-x,根据PA+PB=AB=13,列出等式即可解得.
解答 解:作OE⊥BC,OF⊥AC,
∴∠C=∠CFO=∠OEC=90°,
∴四边形CFOE是矩形;
∵∠CAB,∠CBA的平分线相交于点O,OE⊥BC,OF⊥AC,OP⊥AB,
∴OE=OP=OF,
∴四边形CFOE是正方形,
设OE=OP=OF=x,则AP=AF=5-x,BP=BE=12-x,
∴5-x+12-x=13,
解得x=2,
∴OP=OE=2.
故答案为2.
点评 本题考查了角平分线的性质,正方形的判定,证得四边形CFOE是正方形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com