精英家教网 > 初中数学 > 题目详情

如图,E为DF上的一点,B为AC上的一点,∠1=∠2,∠C=∠D,试说明:AC∥DF.请填空完成推理过程.(∵--因为,∴--所以)
解:∵∠1=∠2(已知)
∠1=∠3(________)
∴∠2=∠3(等量代换)
∴________∥________(________)
∴∠C=∠ABD(________)
又∵∠C=∠D(已知)
∴∠D=∠ABD(________)
∴AC∥DF(________)

对顶角相等    CE    BD    同位角相等,两直线平行    两直线平行,同位角相等    等量代换    内错角相等,两直线平行
分析:利用平行线的判定推知CE∥BD.然后根据平行线的性质、等量代换推知内错角∠D=∠ABD,则AC∥DF.
解答:∵∠1=∠2(已知),∠1=∠3(对顶角相等)
∴∠2=∠3(等量代换)
∴CE∥BD(同位角相等,两直线平行)
∴∠C=∠ABD(两直线平行,同位角相等)
又∵∠C=∠D(已知)
∴∠D=∠ABD(等量代换)
∴AC∥DF(内错角相等,两直线平行).
故答案分别是:对顶角相等;CE、BD;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.
点评:本题考查了平行线的判定与性质.平行线的性质与判定的已知和结论正好相反,都是角的关系与平行线相关.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•涉县模拟)理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.
(1)如图1:当点M与B重合时,S△DCM=
50
50

(2)如图2,当点M与B与A均不重合时,S△DCM=
50
50

(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=
50
50


拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.

实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.
(1)如图1:当点M与B重合时,S△DCM=______;
(2)如图2,当点M与B与A均不重合时,S△DCM=______;
(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=______;

拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.

实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.

查看答案和解析>>

科目:初中数学 来源:2013年河北省邯郸市涉县中考数学模拟试卷(解析版) 题型:解答题

理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.
(1)如图1:当点M与B重合时,S△DCM=______;
(2)如图2,当点M与B与A均不重合时,S△DCM=______;
(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=______;

拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.

实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.

查看答案和解析>>

科目:初中数学 来源:2013年河北省中考数学模拟试卷(二)(解析版) 题型:解答题

理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.
(1)如图1:当点M与B重合时,S△DCM=______;
(2)如图2,当点M与B与A均不重合时,S△DCM=______;
(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=______;

拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.

实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.

查看答案和解析>>

科目:初中数学 来源:2011年河北省石家庄市中考数学一模试卷(解析版) 题型:解答题

理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.
(1)如图1:当点M与B重合时,S△DCM=______;
(2)如图2,当点M与B与A均不重合时,S△DCM=______;
(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=______;

拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.

实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.

查看答案和解析>>

同步练习册答案