精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在平行四边形ABCD中,点EF分别是边ABCD的中点,BD是对角线,AGBDCB的延长线于点G.若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.

【答案】四边形AGBD是矩形

【解析】

先证明四边形AGBD是平行四边形,再由菱形的性质得出AE=BE=DE,通过角之间的关系求出∠2+3=90°即∠ADB=90°,即可判定四边形AGBD是矩形.

当四边形BEDF是菱形时,四边形AGBD是矩形.理由如下:

∵四边形ABCD是平行四边形,∴ADBC

AGBD,∴四边形AGBD是平行四边形.

∵四边形BEDF是菱形,∴DE=BE

AE=BE,∴AE=BE=DE,∴∠1=2,∠3=4

∵∠1+2+3+4=180°,∴22+23=180°,∴∠2+3=90°.

即∠ADB=90°,∴平行四边形AGBD是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】T1T2分别为⊙O的内接正六边形和外切正六边形.设T1的半径rT1T2的边长分别为abT1T2的面积分别为S1S2.下列结论:①ra11;②rb;③ab1;④S1S234.其中正确的有_____.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB是⊙O的切线.

(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.

(3)(3分)在(2)的条件下,设⊙O的半径为3,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“2018双十一购物狂欢节,阿里巴巴天猫在开场的25秒交易额超100亿元.刘老师为此提前花88元购买了一张“88VIP”卡,使用此卡可享受部分特定商品九五折.

(1)为了使买的“88VIP”卡不亏,刘老师应至少选购多少元特定商品?

(2)刘老师在双十一到来之前,分别在两家店里选了一套标价为1100元的书籍和一件标价为990元的羽绒服.据了解,双十一当天书籍可以使用“88VIP”卡,并降价;同时,刘老师发现聪明的老板先将羽绒服提价,双十一当天再降价.最后刘老师双十一购买两种商品所花费的总金额恰好是 (1) 中的最小值,求m的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cx轴交于点AB(3,0),与y轴交于点C(0,3).

(1)求抛物线的解析式;

(2)若点M是抛物线上在x轴下方的动点,过MMNy轴交直线BC于点N,求线段MN的最大值;

(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB为定点,定直线l//ABPl上一动点.点MN分别为PAPB的中点,对于下列各值:

线段MN的长;

②△PAB的周长;

③△PMN的面积;

直线MNAB之间的距离;

⑤∠APB的大小.

其中会随点P的移动而变化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图(1),点EF分别在正方形ABCD的边BCCD上,∠EAF=45°试判断BEEFFD之间的数量关系.

【发现证明】小聪把ABE绕点A逆时针旋转90°ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】如图(2),四边形ABCD中,∠BAD≠90°AB=ADB+D=180°,点EF分别在边BCCD上,则当∠EAF与∠BAD满足  关系时,仍有EF=BE+FD请证明你的结论.

【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°ADC=120°BAD=150°,道路BCCD上分别有景点EF,且AEADDF=401米,现要在EF之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41 =1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.

(1)求证:DE=OE;

(2)若CDAB,求证:BC是⊙O的切线;

(3)在(2)的条件下,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如图所示,则在中正确的判断是(

A. ①②③④ B. C. ①②③ D. ①④

查看答案和解析>>

同步练习册答案