精英家教网 > 初中数学 > 题目详情
如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,BC=3AD,CD=4AD,E、F为两腰的中点,下面给出四个精英家教网结论:
①∠BCD=60°           ②∠CED=90°
③△ADE∽△EDC        ④
AE
AB
=
EF
BC

其中正确的有
 
(要求:把正确结论的序号都填上).
分析:为了解题方便,可以设AD为a,根据条件可知EF为中位线,所以EF=2a且EF∥AD∥BC,依据平行线的性质可以推出△ADE∽△BEC∽△EDC,依据相似三角形的性质推出ED=2a,结合CD=4d的长度,可以知道∠EDF=∠DEF=∠ADE,∠FEC=∠FCE=∠BCE,根据三角形的内角和180°,推出∠DEC=90°,∠EDF=60°,∠ECF=30°,根据勾股定理,可以求出AE、AB、EF、BC的长度,即可看出④错误.
解答:解:设AD=a,∵BC=3AD,CD=4AD,
∴BC=3a,DC=4a,
∵在直角梯形ABCD中,AD∥BC,E、F为两腰的中点,
∴AD∥EF∥BC,
∴∠EDF=∠DEF=∠ADE,∠FEC=∠FCE=∠BCE,
∴在△DEC中,∠DEC=90°,
∴△ADE∽△BEC∽△EDC,
∴AD:DE=DE:DC,
∴ED=2a,
∴∠ECF=30°,
∴∠BCD=∠EDF=60°,
∵∠DEC=90°、ED=2a、DC=4a,
∴EC=2
3
a,
∴EB=AE=
3
a,
∴AB=2
3
a,
∵EF=2a,BC=3a,
∴第④项错误.
故答案为:①②③.
点评:本题主要考查了相似三角形的判定定理和性质,直角梯形的有关性质,直角三角形的相关性质,解题的关键在于根据已知条件和相关的性质定理求出各边的长度,再根据各边之间的关系解得相关角的度数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)如图,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE为直径的⊙O交AB于点F,交CD于点G、H.过点F引⊙O的切线交BC于点N.
(1)求证:BN=EN;
(2)求证:4DH•HC=AB•BF;
(3)设∠GEC=α.若tan∠ABC=2,求作以tanα、cotα为根的一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案