【题目】在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b'),给出如下定义:
若b'=,则称点Q为点P的限变点.例如:点(3,﹣2)的限变点的坐标是(3,﹣2),点(﹣1,5)的限变点的坐标是(﹣1,﹣5).
(1)①点(﹣,1)的限变点的坐标是 ;
②在点A(﹣1,2),B(﹣2,﹣1)中有一个点是函数y=图象上某一个点的限交点,这个点是 ;
(2)若点P在函数y=﹣x+3的图象上,当﹣2≤x≤6时,求其限变点Q的纵坐标b'的取值范围;
(3)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b'的取值范围是b'≥m或b'<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.
【答案】(1)①(﹣,﹣1);②A;(2)当﹣2≤x≤6时,﹣5≤b′≤2;(3)s关于t的函数解析式为s=t2+1(t≥1),s的取值范围是s≥2.
【解析】
(1)①直接根据限变点的定义直接得出答案;
②点(-1,-2)在反比例函数图象上,点(-1,-2)的限变点为(-1,2),据此得到答案;
(2)根据题意可知y=-x+3(x≥-2)图象上的点P的限变点Q必在函数y=的图象上,结合图象即可得到答案;
(3)首先求出y=x2-2tx+t2+t顶点坐标,结合t与1的关系确定y的最值,进而用m和n表示出s,根据t的取值范围求出s的取值范围.
(1)①根据限变点的定义可知点点(﹣,1)的限变点的坐标为(﹣
,﹣1);
②(﹣1,﹣2)限变点为(﹣1,2),即这个点是点A.
(2)依题意,y=﹣x+3(x≥﹣2)图象上的点P的限变点Q必在函数y=的图象上.
当x=﹣2时,y=﹣2﹣3=﹣5,
当x=1时,y=﹣1+3=2,
当x=6时,y=﹣6+3=﹣3,
∴当﹣2≤x≤6时,﹣5≤b′≤2;
(3)∵y=x2﹣2tx+t2+t=(x﹣t)2+t,
∴顶点坐标为(t,t).
若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.
若t≥1,当x≥1时,y的最小值为t,即m=t;
当x<1时,y的值小于﹣[(1﹣t)2+t],即n=﹣[(1﹣t)2+t].
∴s=m﹣n=t+(1﹣t)2+t=t2+1.
∴s关于t的函数解析式为s=t2+1(t≥1),
当t=1时,s取最小值2,
∴s的取值范围是s≥2.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与
轴交于点
,
,把抛物线在
轴及其上方的部分记作
,将
向右平移得
,
与
轴交于点
,
,若直线
与
,
共有
个不同的交点,则
的取值范围是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.
(1)用树状图或列表等方法列出所有可能出现的结果;
(2)求两次摸到的球的颜色不同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰梯形ABCD放置在平面坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.
(1)求点C的坐标和反比例函数的解析式;
(2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com