ÒÑÖªÅ×ÎïÏßy=ax2+bx+c¾­¹ýP£¨
3
£¬3£©£¬E£¨
5
3
2
£¬0£©¼°Ô­µãO£¨0£¬0£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¹ýPµã×÷ƽÐÐÓÚxÖáµÄÖ±ÏßPC½»yÖáÓÚCµã£¬ÔÚÅ×ÎïÏ߶ԳÆÖáÓÒ²àÇÒλÓÚÖ±ÏßPCÏ·½µÄÅ×ÎïÏßÉÏ£¬ÈÎÈ¡Ò»µãQ£¬¹ýµãQ×÷Ö±ÏßQAƽÐÐÓÚyÖá½»xÖáÓÚAµã£¬½»Ö±ÏßPCÓÚBµã£¬Ö±ÏßQAÓëÖ±ÏßPC¼°Á½×ø±êÖáΧ³É¾ØÐÎOABC£¨Èçͼ£©£®ÊÇ·ñ´æÔÚµãQ£¬Ê¹µÃ¡÷OPCÓë¡÷PQBÏàËÆ£¿Èô´æÔÚ£¬Çó³öQµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èç¹û·ûºÏ£¨2£©ÖеÄQµãÔÚxÖáµÄÉÏ·½£¬Á¬½ÓOQ£¬¾ØÐÎOABCÄÚµÄËĸöÈý½ÇÐΡ÷OPC£¬¡÷PQB£¬¡÷OQ¾«Ó¢¼Ò½ÌÍøP£¬¡÷OQAÖ®¼ä´æÔÚÔõÑùµÄ¹Øϵ£¬ÎªÊ²Ã´£¿
·ÖÎö£º£¨1£©½«ÒÑÖªµÄÈýµã×ø±ê´úÈëÅ×ÎïÏß½âÎöʽÖнøÐÐÇó½â¼´¿É£®
£¨2£©¿É¸ù¾ÝÅ×ÎïÏߵĽâÎöʽÉè³öQµãµÄ×ø±ê£¬ÒªÊ¹¡÷OPCÓë¡÷PQBÏàËÆ£¬¿É·ÖÁ½ÖÖÇé¿ö£º
¢Ù¡÷OCP¡×¡÷PBQ£¬´Ëʱ¡ÏCOP=¡ÏBPQ£¬
CO
BP
=
PC
BQ
£¬ÓÃQµãµÄ×ø±ê±íʾ³öBP¡¢BQµÄ³¤£¬¸ù¾ÝÏ߶εıÈÀý¹Øϵʽ¼´¿ÉÇó³öQµãµÄ×ø±ê£®
¢Ú¡÷OCP¡×¡÷QPB£¬´Ëʱ¡ÏCPO=¡ÏBPQ£¬
CO
BQ
=
CP
BP
£¬·½·¨Í¬¢Ù
£¨3£©¸ù¾Ý£¨2£©µÃ³öµÄQµãµÄ×ø±ê½øÐÐÅжϼ´¿É£¬×¢ÒâÔËÓÃÕý·½ÐεÄÐÔÖʺÍһЩÌØÊâ½Ç£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª¿ÉµÃ£º
3a+
3
b=3
75
4
a+
5
3
2
b=0
c=0

½âÖ®µÃ£¬a=-
2
3
£¬b=
5
3
3
£¬c=0£®
Òò¶øµÃ£¬Å×ÎïÏߵĽâÎöʽΪ£ºy=-
2
3
x2+
5
3
3
x£®

£¨2£©´æÔÚ£®
ÉèQµãµÄ×ø±êΪ£¨m£¬n£©£¬Ôòn=-
2
3
m2+
5
3
3
m
£¬
Ҫʹ¡÷OCP¡×¡÷PBQ£¬
ÔòÓÐ
3-n
3
=
m-
3
3
£¬¼´
3+
2
3
m2-
5
3
3
m
3
=
m-
3
3
£¬
½âÖ®µÃ£¬m1=2
3
£¬m2=
3
£®
µ±m1=2
3
ʱ£¬n=2£¬
ËùÒÔµÃQ£¨2
3
£¬2£©
Ҫʹ¡÷OCP¡×¡÷QPB£¬ÔòÓÐ
3-n
3
=
m-
3
3
£¬¼´
3+
2
3
m2-
5
3
3
m
3
=
m-
3
3

½âÖ®µÃ£¬m1=3
3
£¬m2=
3
£¬
µ±m=
3
ʱ£¬¼´ÎªPµã£¬
µ±m1=3
3
ʱ£¬n=-3£¬
ËùÒÔµÃQ£¨3
3
£¬-3£©£®
¹Ê´æÔÚÁ½¸öQµãʹµÃ¡÷OCPÓë¡÷PBQÏàËÆ£®QµãµÄ×ø±êΪ£¨2
3
£¬2£©£¬£¨3
3
£¬-3£©£®

£¨3£©ÔÚRt¡÷OCPÖУ¬
ÒòΪtan¡ÏCOP=
CP
OC
=
3
3
£®
ËùÒÔ¡ÏCOP=30¶È£®
µ±QµãµÄ×ø±êΪ£¨2
3
£¬2£©Ê±£¬¡ÏBPQ=¡ÏCOP=30¶È£®
ËùÒÔ¡ÏOPQ=¡ÏOCP=¡ÏB=¡ÏQAO=90¶È£®
Òò´Ë£¬¡÷OPC£¬¡÷PQB£¬¡÷OPQ£¬¡÷OAQ¶¼ÊÇÖ±½ÇÈý½ÇÐΣ®
ÓÖÔÚRt¡÷OAQÖУ¬
ÒòΪtan¡ÏQOA=
QA
AO
=
3
3
£®
ËùÒÔ¡ÏQOA=30¶È£®
¼´ÓСÏPOQ=¡ÏQOA=¡ÏQPB=¡ÏCOP=30¶È£®
ËùÒÔ¡÷OPC¡×¡÷PQB¡×¡÷OQP¡×¡÷OQA£¬
ÓÖÒòΪQP¡ÍOP£¬QA¡ÍOA£¬¡ÏPOQ=¡ÏAOQ=30¡ã£¬
ËùÒÔ¡÷OQA¡Õ¡÷OQP£®
µãÆÀ£º±¾ÌâÊÇÒ»µÀÉæ¼°º¯Êý¡¢ÏàËÆ¡¢Èý½ÇµÈ֪ʶµÄ×ÛºÏÌ⣬½â¾öµÚ3ÌâµÄ¹Ø¼üÔÚÓÚͨ¹ý¹Û²ìµÃ³ö¶Ô½á¹ûµÄºÏÀí²ÂÏëÔÚ½øÐÐÖ¤Ã÷£¬ÄѶÈÓ¦¸Ã²»»áºÜ´ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©¾­¹ýA£¨-2£¬0£©£¬B£¨0£¬-4£©£¬C£¨2£¬-4£©Èýµã£¬ÇÒ¾«Ó¢¼Ò½ÌÍøÓëxÖáµÄÁíÒ»¸ö½»µãΪE£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÓÃÅä·½·¨ÇóÅ×ÎïÏߵĶ¥µãDµÄ×ø±êºÍ¶Ô³ÆÖ᣻
£¨3£©ÇóËıßÐÎABDEµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy=ax2ºÍÖ±Ïßy=kxµÄ½»µãÊÇP£¨-1£¬2£©£¬Ôòa=
 
£¬k=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

2¡¢ÒÑÖªÅ×ÎïÏßy=ax2+bx+cµÄ¿ª¿ÚÏòÏ£¬¶¥µã×ø±êΪ£¨2£¬-3£©£¬ÄÇô¸ÃÅ×ÎïÏßÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2+bx+c£¨ÆäÖÐb£¾0£¬c£¼0£©µÄ¶¥µãPÔÚxÖáÉÏ£¬ÓëyÖá½»ÓÚµãQ£¬¹ý×ø±êÔ­µãO£¬×÷OA¡ÍPQ£¬´¹×ãΪA£¬ÇÒOA=
2
£¬b+ac=3£®
£¨1£©ÇóbµÄÖµ£»
£¨2£©ÇóÅ×ÎïÏߵĽâÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¹ãÖÝ£©ÒÑÖªÅ×ÎïÏßy1=ax2+bx+c£¨a¡Ù0£¬a¡Ùc£©¹ýµãA£¨1£¬0£©£¬¶¥µãΪB£¬ÇÒÅ×ÎïÏß²»¾­¹ýµÚÈýÏóÏÞ£®
£¨1£©Ê¹ÓÃa¡¢c±íʾb£»
£¨2£©ÅжϵãBËùÔÚÏóÏÞ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÈôÖ±Ïßy2=2x+m¾­¹ýµãB£¬ÇÒÓÚ¸ÃÅ×ÎïÏß½»ÓÚÁíÒ»µãC£¨
ca
£¬b+8
£©£¬Çóµ±x¡Ý1ʱy1µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸