精英家教网 > 初中数学 > 题目详情
13.如图,正方形BCPQ对角线交于点A,将一块等腰直角三角形中45°角的顶点放在A点,斜边AG所在的直线交BC于点D,直角边AH所在的直角交BC于点E.
(1)在边BC上取一点M,连接AM,AD平分∠BAM,求证:AE平分∠MAC;
(2)在(1)的条件下,请判断BD、CE、DE之间的数量关系,并证明你的结论.

分析 (1)只要证明∠DAM+∠EAM=∠BAD+∠EAC,由AD平分∠BAM,可得∠BAD=∠DAM即可推出∠EAM=∠EAC.

解答 (1)证明:∵∠DAE=45°,
∴∠DAM+∠EAM=45°,
在正方形BCPQ中,BP⊥CQ,∴∠BAC=90°,
∴∠BAD+∠CAE=45°,
∴∠DAM+∠EAM=∠BAD+∠EAC
AD平分∠BAM,
∴∠BAD=∠DAM
∴∠EAM=∠EAC 即AE平分∠MAC.

(2)解:结论:BD2+CE2=DE2
证明:延长AM到点F,使AF=AB,
在正方形BCPQ中,AB=AC,∠BAC=90°,
∴AF=AC,∠ABC=∠ACB=45°,
∵∠BAD=∠DAM  由(1)知,∠EAM=∠EAC,
又AF=AF,
∴△FAD≌△BAD,△FAE≌△CAE,
∴∠AFD=∠ABC=45°,DF=BD,∠AFE=∠ACB=45°,EF=EC,
∴∠DFE=90°,
在Rt△DEF中,DF2+EF2=DE2
∴BD2+CE2=DE2

点评 本题考查正方形的性质、角平分线的定义、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.一个口袋中装有3个白球、5个红球,这些球除了颜色外完全相同,充分摇匀后随机摸出一球,发现是白球
(1)如果将这个白球放回,再摸出一球,它是白球的概率是多少?
(2)如果将这个白球不放回,再摸出一球,它是白球的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图是某汽车行驶的路程s(km)与时间t(分钟) 的函数关系图.观察图中所提供的信息,解答下列问题:
(1)求汽车在前9分钟内的平均速度.
(2)汽车在中途停留的时间.
(3)求该汽车行驶30千米的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知EF∥AD,∠1=∠2,∠BAC=60°,求∠AGD的度数.下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.
【解】∵EF∥AD(已知)
∴∠2=∠3(两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠1=∠3(等量代换)
∴AB∥DG(内错角相等,两直线平行)
∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补)
又∵∠BAC=60°(已知)
∴∠AGD=120°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.用火柴棒搭的图形如图所示:

(1)若按这样的规律摆下去,请把表格补充完整:
图形标号n
火柴棒数591317214n+1
(2)搭第几个图形需要2017根火柴棒?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,△ABC和△CDE都是等腰直角三角形,且CA=CB,CE=CD.求证:△ACE≌△BCD.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.已知反比例函数y=$\frac{6}{x}$,在下列结论中,错误的是(  )
A.图象位于第一、三象限B.图象必经过点(-2,-3)
C.y随x的增大而增大D.若x>2,则y<3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中,矩形OABC的两边OA、OC分别落在x轴、y轴上,且OA=4,OC=3.

(1)求对角线OB所在直线的解析式;
(2)如图,将△OAB沿对角线OB翻折得到△OBN,ON与AB交于点M.
①判断△OBM是什么三角形,并说明理由;
②试求直线MN的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.尺规作图
已知:如图,∠MAB=90°及线段AB.
求作:正方形ABCD.
要求:
(1)保留作图痕迹,不写做法,作出一个满足条件的正方形即可;
(2)写出你作图的依据.

查看答案和解析>>

同步练习册答案