精英家教网 > 初中数学 > 题目详情
1.某校九年级举办了首届“汉字听写大赛”,全校500名九年级学生全部参加,他们同时听写50个汉字,每正确听写出一个汉字得1分,为了解学生们的成绩,随机抽取了部分学生的成绩,并根据测试成绩绘制出如下两幅不完整的统计表和频数分布直方图:
 组别 成绩x分 人数 频率
 1组 25≤<30 4 0.08
 2组 30≤x<35 8 0.16
 3组 35≤x<40 a 0.32
 4组 40≤x<45 b c
 5组 45≤x<50 10 0.2
(1)求此次抽查了多少名学生的成绩;
(2)通过计算将频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.

分析 (1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;
(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;
(3)先得到成绩优秀的频率,再乘以500即可求解.

解答 解:(1)4÷0.08=50(名).
答:此次抽查了50名学生的成绩;
(2)a=50×0.32=16(名),
b=50-4-8-16-10=12(名),
c=1-0.08-0.16-0.32-0.2=0.24,
如图所示:

(3)500×(0.24+0.2)
=500×0.44
=220(名).
答:本次测试九年级学生中成绩优秀的人数是220名.

点评 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.如图,在△ABC中,AB=6,BC=3,CA=7,I为△ABC的内心,连接CI并延长交AB于点D.记△CAI的面积为m,△DAI的面积为n,则$\frac{m}{n}$=(  )
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{7}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某市“创城办”为了解该市市民参加社会公益活动情况,随机抽查了部分市民一个月参加社会公益活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:

请根据图中提供的信息,回答下列问题:
(1)求a的值,并补全条形统计图;
(2)请直接写出在这次抽样调查中,众数和中位数分别是多少?
(3)如果该市市民约有200000人,请你估计参加“公益活动时间不少于7天”的市民有多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长.已知该养殖户第一年的可变成本为3万元,如果该养殖户第三年的养殖成本为7.63万元,求可变成本平均每年增长的百分率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.为了解高邮市6000名九年级学生英语口语考试成绩的情况,从中随机抽取了部分学生的成绩(满分30分,得分均为整数),制成下表:
分数段(x分)x≤1011≤x≤1516≤x≤2021≤x≤2526≤x≤30
人    数101535112128
(1)本次抽样调查共抽取了300名学生;
(2)若用扇形统计图表示统计结果,则分数段为x≤10的人数所对应扇形的圆心角为12°;
(3)学生英语口语考试成绩的众数不会落在11≤x≤15的分数段内;(填“会”或“不会”)
(4)若将26分以上(含26)定为优秀,请估计该区九年级考生成绩为优秀的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.正方形ABCD内接于⊙O,如图所示,在劣弧$\widehat{AB}$上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:
(1)四边形EBFD是矩形;
(2)DG=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.化简:${(\sqrt{x-1})^2}$=x-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,平面直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点C(0,4),交y轴负半轴于点D.
(1)求⊙M的半径及点A坐标;
(2)在⊙M上是否存在点P,使∠CPM=45°?若存在,在图①中画出P点位置,并直接写出P点的坐标,若不存在,请说明理由.
(3)在图②中,过点C作⊙M的切线CE交过x轴负半轴于点E,过点A作AN⊥CE于点F,交⊙M于点N,求AN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.计算:${2^{-2}}+{(\sqrt{3})^0}-|{-2}|$=$-\frac{3}{4}$.

查看答案和解析>>

同步练习册答案