精英家教网 > 初中数学 > 题目详情
(2001•四川)已知x1,x2是关于x的一元二次方程4x2+4(m-1)x+m2=0的两非零实数根:问x1与x2能否同号,若能同号,请求出相应的m的取值范围;若不能同号,请说明理由.
【答案】分析:根据方程有两非零实数根,则△≥0,可解得m的取值范围,方程的两根同号,则方程两根的积一定是一个正数,根据根与系数的关系即可得到关于m的不等式,即可求得m的范围.
解答:解:∵方程有两非零实数根,
∴△=16(m-1)2-16m2=16m2-32m+16-16m2=16-32m≥0,
∴m≤
∵x1+x2=-=1-m,x1x2=
∵1-m>0,>0,
∴m≠0且m≤时,x1与x2能同号.
点评:总结:一元二次方程根的情况与判别式△的关系及根与系数的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
(4)若一元二次方程有实数根,则x1+x2=-,x1x2=
练习册系列答案
相关习题

科目:初中数学 来源:2001年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(2001•四川)已知抛物线y=ax2+bx+c(a≠0)与x轴相交于不同的两点A(x1,0),B(x2,0)(x1<x2),与y轴的负半轴交于点C.若抛物线顶点的横坐标为-1,A、B两点间的距离为10,且△ABC的面积为15.
(1)求此抛物线的解析式;
(2)求出点A和点B的坐标;
(3)在x轴上方,(1)中的抛物线上是否存在点C',使得以A、B、C'为顶点的三角形与△ABC相似?若存在,求出点C'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年四川省中考数学试卷(解析版) 题型:解答题

(2001•四川)已知抛物线y=ax2+bx+c(a≠0)与x轴相交于不同的两点A(x1,0),B(x2,0)(x1<x2),与y轴的负半轴交于点C.若抛物线顶点的横坐标为-1,A、B两点间的距离为10,且△ABC的面积为15.
(1)求此抛物线的解析式;
(2)求出点A和点B的坐标;
(3)在x轴上方,(1)中的抛物线上是否存在点C',使得以A、B、C'为顶点的三角形与△ABC相似?若存在,求出点C'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《图形的相似》(02)(解析版) 题型:解答题

(2001•四川)已知:如图,AB为⊙O的直径,AC为弦,CD⊥AB于D.若AE=AC,BE交⊙O于点F,连接CF、DE.
求证:(1)AE2=AD•AB;
(2)∠ACF=∠AED.

查看答案和解析>>

科目:初中数学 来源:2001年四川省中考数学试卷(解析版) 题型:解答题

(2001•四川)已知x1,x2是关于x的一元二次方程4x2+4(m-1)x+m2=0的两非零实数根:问x1与x2能否同号,若能同号,请求出相应的m的取值范围;若不能同号,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年四川省中考数学试卷(解析版) 题型:解答题

(2001•四川)已知如图,在平行四边形ABCD中,BN=DM,BE=DF.求证:四边形MENF是平行四边形.

查看答案和解析>>

同步练习册答案