精英家教网 > 初中数学 > 题目详情
精英家教网如图,A、B是双曲线 y=
k
x
(k>0)上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=9.则k的值为(  )
A、2B、3C、6D、9
分析:由点A与点B在双曲线上,故把已知两点的横坐标代入反比例解析式分别求出A、B两点的纵坐标,从而表示出两点坐标,然后求出直线AB的函数表达式y=mx+b,把表示出的两点坐标分别代入得到一个方程组,利用加减消元法即可表示m与b,确定出直线AB的解析式,然后令y=0,求出x的值,确定出C点的坐标,即可求出OC的长度,而三角形AOC的高即为点A的纵坐标,利用三角形的面积公式表示出S△AOC,让其面积等于9即可推出k的值.
解答:解:∵A、B是双曲线 y=
k
x
(k>0)上的点,A、B两点的横坐标分别是a、2a,
∴A(a,
k
a
),B(2a,
k
2a
),
∴设直线AB的函数是为:y=mx+b,
k
a
= ma+b①
k
2a
=2am+b②

∴②-①得:m=-
k
2a2

.∴b=
3k
2a

∴直线AB的解析式为:y=-
k
2a2
x+
3k
2a

∵C点为直线AB与x轴的交点,
∴C点的坐标为:(3a,0),
∵S△AOC=9,
1
2
• 3a•
k
a
=9,
∴k=6.
故选C.
点评:本题主要考查根据反比例函数解析式求点的坐标,根据点的坐标求直线的解析式,关键在于求出直线AB的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,A、B是双曲线y=
k
x
(k>0)
上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=6.则k的值为(  )
A、1B、2C、4D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,C,D是双曲线y=
m
x
在第1象限内的分支上的两点,直线CD分别交x轴、y轴于A、B两点,设C、D坐标(x1,y1),(x2,y2),连接OC、OD,求证:y1<OC<y1+
m
y1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•沙县质检)如图,A、B两点是双曲线的一个分支上的两点,点B在点A右侧,并且B的坐标为(a,b),则a的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知C、D是双曲线y=
m
x
在第一象限内的分支上两点,直线CD分别交x轴、y轴于A、B,CG⊥x轴于G,DH⊥x轴于H,
OG
GC
=
DH
OH
=
1
4
,OC=
17

(1)求m的值和D点的坐标;
(2)在双曲线第一象限内的分支上是否有一点P,使得S△POC=S△POD?若存在,求出P点坐标;若不存在,请说明理由.
(3)如图2,点K是双曲线y=
m
x
在第三象限内的分支上的一动点,过点K作KM⊥y轴于M,OE平分∠KOA,KE⊥OE,KE交y轴于N,直线ME交x轴于F,①
OF2+MN2
ON2
,②
OF+MN
ON
,有一个为定值,请你选择正确结论并求出这个定值.

查看答案和解析>>

同步练习册答案