精英家教网 > 初中数学 > 题目详情
已知:如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点.折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网
精英家教网

精英家教网
连接EP交NQ与点F,则NQ是EP的中垂线,
在直角△AEP中,EP=
AE2+AP2
=
x2+1

则EF=PF=
x2+1
2

∵∠A=∠NFP=90°,∠NPF=∠EPA,
∴△PFN△PAE,
PF
PA
=
PN
PE
,即
x2+1
2x
=
PN
x2+1

则PN=
x2+1
2x

∵直角△NPQ中,PF⊥NQ,
∴△QPN△PFN
∴△QPN△PAE,
PQ
AP
=
PN
AE
,即
y
x
=
x2+1
2x
,则y=
1
2
x2+
1
2

则函数图象是D.
故选D.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点.折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,矩形纸片ABCD的边AD=3,CD=2,点P是边CD上的一个动点(不与点C重合,把这张矩形纸片折叠,使点B落在点P的位置上,折痕交边AD于点M,折痕交边BC于点N.
(1)写出图中的全等三角形.设CP=x,AM=y,写出y与x的函数关系式;
(2)试判断∠BMP是否可能等于90°.如果可能,请求出此时CP的长;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,矩形纸片ABCD的边AD=3,CD=2,点P是边CD上的一个动点(不与点C重合,把这张矩形纸片折叠,使点B落在点P的位置上,折痕交边AD于点M,折痕交边BC于点N.
(1)写出图中的全等三角形.设CP=x,AM=y,写出y与x的函数关系式;
(2)试判断∠BMP是否可能等于90°.如果可能,请求出此时CP的长;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,矩形纸片ABCD的边AD=3,CD=2,点P是边CD上的一个动点(不与点C重合,把这张矩形纸片折叠,使点B落在点P的位置上,折痕交边AD与点M,折痕交边BC于点N .

(1)写出图中的全等三角形. 设CP=AM=,写出的函数关系式;

(2)试判断∠BMP是否可能等于90°. 如果可能,请求出此时CP的长;如果不可能,请说明理由.

      

查看答案和解析>>

同步练习册答案