精英家教网 > 初中数学 > 题目详情

已知抛物线的顶点在x轴上,且与y轴交于A点. 直线经过A、B两点,点B的坐标为(3,4).
(1)求抛物线的解析式,并判断点B是否在抛物线上;
(2)如果点B在抛物线上,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x.当x为何值时,h取得最大值,求出这时的h值.

(1) 不在;(2)当时,h有最大值.

解析试题分析:(1)∵抛物线的顶点在x轴上,
.
∴b=±2.
∴抛物线的解析式为
将B(3,4)代入,左=右,
∴点B在抛物线上.
将B(3,4)代入,左≠右,
∴点B不在抛物线
(2)∵A点坐标为(0,1),点B坐标为(3,4),直线过A、B两点
.∴
.
∵点B在抛物线上.
设P、E两点的纵坐标分别为yP和yE .
∴ PE=h=yP-yE
=(x+1)-(x2-2x+1)
=-x2+3x.
即h=x2+3x(0<x<3).
∴当时,h有最大值
最大值为.
考点:二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

抛物线过点(2,-2)和(-1,10),与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式.
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,直线与x轴相交于点A,与直线相交于点P.动点E从原点O出发,以每秒1个单位长度的速度沿着OPA的路线向点A匀速运动(E不与点O,A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分面积为S.

(1)求点P的坐标;
(2)请判断△OPA的形状并说明理由;
(3)请探究S与t之间的函数关系式,并指出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=ax2+bx+c经过(-1,0),(0,-3),(2,-3)三点,求这条抛物线的解析式,并指出对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

二次函数y=x2+bx+c的图象经过点(4,3),(3,0).
(1)b=        ,c=         
(2)选取适当的数据填写下表,并在右图的直角坐标系中画出该函数的图像;

x

 
 
 
 
 

y

 
 
 
 
 

 
(3)若将此图象沿x轴向左平移3个单位,直接写出平移后图象所对应的函数关系式           .

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线).
(1)求抛物线与轴的交点坐标;
(2)若抛物线与轴的两个交点之间的距离为2,求的值;
(3)若一次函数的图象与抛物线始终只有一个公共点,求一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2。C2的图象与x轴交于A、B两点(点A在点B的左侧)。

(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形,如果存在,请求出点G的坐标,如果不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线AB分别交y轴、x 轴于A、B两点,OA=2,,抛物线过A、B两点.

(1)求直线AB和这个抛物线的解析式;
(2)设抛物线的顶点为D,求△ABD的面积
(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t 取何值时,MN的长度l有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线y=x+3与坐标轴分别交于A,B两点,抛物线y=ax2+bx﹣3a经过点A,B,顶点为C,连接CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称.


(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形.

查看答案和解析>>

同步练习册答案