精英家教网 > 初中数学 > 题目详情

【题目】关于二次函数,下列说法错误的是(

A.时,的增大而减小B.它的图象与轴有交点

C.时,D.它的图象与轴交于点

【答案】C

【解析】

A. 根据对称轴及开口方向可判断;

B. y=0,解一元二次方程,可判断;

C. 通过抛物线与x轴的交点,结合开口方向可判断;

D. x=0,求出y值,可判断.

解:在函数y=x2-4x+3a=10
∴此函数图象开口向上;
又∵a=1b=-4c=3

∴顶点坐标是(2-1),且对称轴是x=2
x1时,即说明x的取值范围在对称轴的左边,
yx的增大而减小,故A正确,不符合题意;
∴令x2-4x+3=0
解得x1=1x2=3
∴此函数图象和x轴有交点,求交点坐标是(10);(30).
B正确,不符合题意;

1x3时,抛物线在x轴下方,

y0,故C错误,符合题意;

x=0时,y=3

∴抛物线与轴交于点,故D正确,不符合题意.
故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A在反比例函数x0)的图像上,过点AACx轴,垂足是CAC=OC.一次函数y=kx+b的图像经过点A,与y轴的正半轴交于点B

1)求点A的坐标;

2)若四边形ABOC的面积是,求一次函数y=kx+b的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=y=kx2-k(k≠0)在同一直角坐标系中的图象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD和正方形AEFG的边长分别为2B在边AGD在线段EA的延长线上连接BE

(1)如图1,求证DGBE

(2)如图2,将正方形ABCD绕点A按逆时针方向旋转当点B恰好落在线段DG上时求线段BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们县是紫菜生产大县,某景点商户向游客推销一种加工好的优质紫菜,已知每千克成本为20.市场调查发现,在一段时间内,该产品销售量(千克)与销售单价(元/千克)的变化而变化有如下关系式:.设这种紫菜在这段时间内的销售利润为(元).

1)求的关系式;

2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?

3)如果物价部门规定该景区这种紫菜的销售单价不得高于28/千克,该商户每天能否获得比150元更大的利润?如果能请求出最大利润,如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学家刘徽发展了重差术,用于测量不可到达的物体的高度,比如,通过下列步骤可测量山的高度PQ(如图):

(1)测量者在水平线上的A处竖立一根竹竿,沿射线QA方向走到M处,测得山顶P、竹竿顶端BM在一条直线上;

(2)将该竹竿竖立在射线QA上的C处,沿原方向继续走到N处,测得山顶P、竹竿顶端DN在一条直线上;

(3)设竹竿与AM、CN的长分别为、a1、a2,可得公式:PQ=.则上述公式中,d表示的是( )

A. QA的长 B. AC的长 C. MN的长 D. QC的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB = 90°BC = 6AC = 8.点DAB边上一点,过点DDE // BC,交边ACE.过点CCF // AB,交DE的延长线于点F

1)如果,求线段EF的长;

2)求∠CFE的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,点分别在上,且,连接,且平分,连接于点,则线段的长为______.

查看答案和解析>>

同步练习册答案