精英家教网 > 初中数学 > 题目详情

如图1,在△ABC中,AB=AC,. 过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.
     
(1)求证:
(2)点为线段延长线上一点,将射线GC绕着点G逆时针旋转,与射线BD交于点E.
①若,如图2所示,求证:
②若,请直接写出的值(用含的代数式表示).

(1)先根据角平分线的性质结合平行线的性质证得,再结合即可证得结论;(2)①过于点,根据等腰三角形的性质可得,根据三角形的内角和定理可得,由(1)得,即可得到点在以为圆心,为半径的圆上,根据圆周角定理可得,即得,然后证得△∽△,再根据相似三角形的性质即可证得结论;②

解析试题分析:(1)先根据角平分线的性质结合平行线的性质证得,再结合即可证得结论;(2)①过于点,根据等腰三角形的性质可得,根据三角形的内角和定理可得,由(1)得,即可得到点在以为圆心,为半径的圆上,根据圆周角定理可得,即得,然后证得△∽△,再根据相似三角形的性质即可证得结论;②根据①的结论推导可得结果.
(1)∵平分








(2)①过于点





由(1)得
∴点在以为圆心,为半径的圆上.

.
==


∴△∽△

=4.




考点:旋转问题的综合题
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图1,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E.
(1)求证:AD是圆O的切线;
(2)当∠BAC=90°时,求证:
PE
CE
=
1
2

(3)如图2,当PC是圆O的切线,E为AD中点,BC=8,求AD的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:
(1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;
(2)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;
(3)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说精英家教网明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,在四边形ABCD中,BC⊥CD,∠ACD=∠ADC.求证:AB+AC>
BC2+CD2

(2)已知:如图2,在△ABC中,AB上的高为CD,试判断(AC+BC)2与AB2+4CD2之间的大小关系,并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,AD和AE分别是△ABC的BC边上的高和中线,点D是垂足,点E是BC的中点,规定:λA=
DE
BD
.如图2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.
(1)求证:∠AOC=90°+
12
∠ABC;
(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.

查看答案和解析>>

同步练习册答案