精英家教网 > 初中数学 > 题目详情
(2009•朝阳区一模)(1)已知:如图1,Rt△ABC中,∠ACB=90°,AC=BC,点D、E在斜边AB上,且∠DCE=45度.求证:线段DE、AD、EB总能构成一个直角三角形;
(2)已知:如图2,等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数;
(3)在(1)的条件下,如果AB=10,求BD•AE的值.

【答案】分析:(1)可通过构建全等三角形将所求的三条线段转换到同一个三角形中,然后证明那个三角形是直角三角形即可.可以CE为一边作∠ECF=∠ECB,在CF上截取CF=CB,连接DF、EF,那么我们可得出△CFE≌△CBE,于是EF=BE,然后我们再设法求得AD=DF,就能将三条线段转换到同一三角形中了.要证明AD=DF就要证明三角形DCF和DCA全等.这两个三角形中已知的条件AC=BC=CF,又有一条公共边只要证得两组对应边的夹角相等即可.∠DCE=∠ECF+∠DCF=45°,那么∠DCA+∠ECB=45°,因此∠DCF=∠DCA这样就构成了三角形全等的条件,那么两三角形全等,AD=DF,根据上面两组全等三角形,我们可得出∠1+∠2=∠A+∠B=90°,因此三角形DEF是个直角三角形,那么也就得出AD、DE、BE总能构成一个直角三角形了.
(2)解题思路和辅助线作法与(1)完全相同,只不过得出AD=DF,EF=BE后,要使三角形DEF是个等腰三角形就要让DE=EF,即AD=BE,那么这个条件就是AD=BE.
(3)本题可通过相似三角形得出线段的比例来求得.∠AEB=45°+∠BCE=∠BCD,∠A=∠B=45°,我们可得出AE:BC=AC:BD,即BD•AE=AC•BC=AC2,直角三角形ACB中,我们知道AC2+BC2=AB2,即AC2=50,那么BD•AE=50.
解答:(1)证明:如图1,∵∠ACB=90°,AC=BC,
∴∠A=∠B=45°.
以CE为一边作∠ECF=∠ECB,在CF上
截取CF=CB,则CF=CB=AC.
连接DF、EF,则△CFE≌△CBE.
∴FE=BE,∠1=∠B=45°.
∵∠DCE=∠ECF+∠DCF=45°,
∴∠DCA+∠ECB=45°.
∴∠DCF=∠DCA.
又∵AC=CF,CD=CD
∴△DCF≌△DCA.
∴∠2=∠A=45°,DF=AD.
∴∠DFE=∠2+∠1=90°.
∴△DFE是直角三角形.
又AD=DF,EB=EF,
∴线段DE、AD、EB总能构成一个直角三角形.

(2)解:当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.
如图2,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,
可得△CFE≌△CBE,△DCF≌△DCA.
∴AD=DF,EF=BE.
∴∠DFE=∠1+∠2=∠A+∠B=120°.
若使△DFE为等腰三角形,只需DF=EF,即AD=BE.
∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.
且顶角∠DFE为120°.

(3)解:如图1,
∵∠ACE=∠ACD+∠DCE,∠CDB=∠ACD+∠A.
又∠DCE=∠A=45°,
∴∠ACE=∠CDB.
又∠A=∠B,
∴△ACE∽△BDC.

∴BD•AE=AC•BC.
∵Rt△ACB中,由AC2+BC2=AB2=102,得AC2=BC2=50.
∴BD•AE=AC•BC=AC2=50.
点评:本题中利用全等或相似三角形来得出角相等,线段相等或成比例是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2010年浙江省名校中考数学模拟试卷(二)(解析版) 题型:解答题

(2009•朝阳区一模)抛物线与x轴交于A(-1,0)、B两点,与y轴交于点C(0,-3),抛物线顶点为M,连接AC并延长AC交抛物线对称轴于点Q,且点Q到x轴的距离为6.
(1)求此抛物线的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,求出点D的坐标;
(3)抛物线对称轴上是否存在一点P,使得S△PAM=3S△ACM,若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年北京市朝阳区中考数学一模试卷(解析版) 题型:解答题

(2009•朝阳区一模)抛物线与x轴交于A(-1,0)、B两点,与y轴交于点C(0,-3),抛物线顶点为M,连接AC并延长AC交抛物线对称轴于点Q,且点Q到x轴的距离为6.
(1)求此抛物线的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,求出点D的坐标;
(3)抛物线对称轴上是否存在一点P,使得S△PAM=3S△ACM,若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年北京市朝阳区中考数学一模试卷(解析版) 题型:解答题

(2009•朝阳区一模)如图,点A在反比例函数的图象与直线y=x-2交于点A,且A点纵坐标为1,求该反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市十五中全真模拟考试数学试卷(解析版) 题型:填空题

(2009•朝阳区一模)已知抛物线y=x2-2(m+1)x+m2与x轴的两个交点的横坐标均为整数,且m<5,则整数m的值为   

查看答案和解析>>

科目:初中数学 来源:2009年北京市朝阳区中考数学一模试卷(解析版) 题型:解答题

(2009•朝阳区一模)响应“绿色环保,畅通出行”的号召,越来越多的市民选择乘地铁出行,为保证市民方便出行,我市新建了多条地铁线路,与旧地铁线路相比,新建地铁车站出入口上下楼梯的高度普遍增加,已知原楼梯BD长20米,在楼梯水平长度(BC)不发生改变的前提下,楼梯的倾斜角由30°增大到45°,那么新修建的楼梯高度将会增加多少米?(结果保留整数,参考数据:

查看答案和解析>>

同步练习册答案