精英家教网 > 初中数学 > 题目详情
如图,直线y=kx+b分别交x轴,y轴于A、B两点,与双曲线y=
m
x
交于C、D两点.点A的坐标为(2,0),且OA=OB=AC=BD,求:
(1)k和b;
(2)m(精确到0.01)
考点:反比例函数与一次函数的交点问题
专题:
分析:(1)求出B的坐标,根据待定系数法即可求得k、b的值.
(2)作CE⊥x轴于点E.易得到△CAE为等腰直角三角形.就可求得C的坐标,据待定系数法就可求得m的值;
解答: 解:(1)∵OA=OB,A点的坐标为(2,0).
∴点B的坐标为(0,-2),
代入y=kx+b,得
b=-2
2k+b=0
,解得
k=1
b=-2


(2)作CE⊥x轴于点E.易得到△CAE为等腰直角三角形.
∵AC=OA=2,那么AE=2×cos45°=
2
,那么OE=2+
2
,那么点C坐标为(2+
2
2
).
代入y=
m
x
2
=
m
2+
2
,解得m=2+2
2
点评:本题考查用待定系数法求函数解析式,解题关键是利用所给条件得到关键点的坐标,进而求得函数解析式
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:
 销售时段 销售数量销售收入 
 A种型号 B种型号
 第一周 3台 5台 1800元
 第二周 4台 10台 3100元
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

“智慧小组”有女生2人,男生3人,若从中随机选出两人参加小组展示学习活动,则选取的两人正好为一男一女的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

南宁地铁1号线一期工程西起石埠,东至南宁东站,全线采用地下线方式铺设,线路长32.1公里.32.1公里可用科学记数法可表示为(  )米.
A、0.321×105
B、3.21×104
C、32.1×103
D、3.21×103

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰三角形一腰上的高与另一腰的夹角为36°,求这个等腰三角形的底角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正比例函数y=2x与反比例函数的图象交于点A(m,-2)
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时,自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移
3
个单位长度得到点B,判断四边形OABC的形状并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=-x2-2x+m与x轴交于A(1,0)点,与y轴交于点C,另有一条直线l的解析式为y=2x+n.
(1)求m的值及点C的坐标;
(2)当直线l经过点C时,求直线l与抛物线的另一个交点P的坐标;
(3)当n=10时,直线l与抛物线是否有交点?若有,请求出交点的坐标;若无,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O的半径为4cm,如果圆心O到直线L的距离为3.5cm,那么直线L与⊙O的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若一个正n边形的一个外角为45°,则n等于(  )
A、6B、8C、10D、12

查看答案和解析>>

同步练习册答案