【题目】如图,在正方形ABCD中,AB=6,点E在对角线BD上,DE=2,连接CE,过点E作EF⊥CE,交线段AB于点F
(1)求证:CE=EF;
(2)求FB的长;
(3)连接FC交BD于点G.求BG的长.
【答案】(1)见解析;(2)2;(3)
【解析】
(1)过E作EM⊥AB于M,EH⊥BC于H,根据正方形的性质得到∠EBM=∠HBE=45°,求得EM=EH,根据全等三角形的性质即可得到结论;
(2)根据勾股定理得到BD=6,得到AM=CH=2,根据全等三角形的性质得到FM=CH=2,于是得到结论;
(3)过G作GN⊥BC于N,设GN=BN=x,根据相似三角形的性质即可得到结论.
解:(1)过E作EM⊥AB于M,EH⊥BC于H,
∵四边形ABCD是正方形,
∴∠EBM=∠HBE=45°,
∴EM=EH,
∵∠EMB=∠MBH=∠BHE=90°,
∴∠MEH=90°,
∵EF⊥CE,
∴∠MEF=90°,
∴∠MEF=∠CEH,
∴△EMF≌△EHC(ASA),
∴CE=EF;
(2)∵AB=6,
∴BD=6,
∵DE=2,
∴BE=BD﹣DE=4,
∴BM=BH=4,
∴AM=CH=2,
∵△EMF≌△EHC,
∴FM=CH=2,
∴BF=AB﹣AM﹣MF=6﹣2﹣2=2;
(3)过G作GN⊥BC于N,
∴GN=BN,
设GN=BN=x,
∴CN=6﹣x,
∵GN⊥BC,AB⊥BC,
∴GN∥BF,
∴△CGN∽△CFB,
∴,
∴,
∴x=,
∴BN=GN=,
∴BG=BN=.
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.
(1)求证:四边形ADBE是矩形;
(2)求矩形ADBE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,BC=6,S△ABC=18,正方形DEFG的边FG在BC上,顶点D,E分别在AB,AC上.
(1)如图1,过点A作AH⊥BC于点H,交DE于点K,求正方形DEFG的边长;
(2)如图2,在BE上取点M,作MN⊥BC于点N,MQ∥DE交AB于点Q,QP⊥BC于点P,求证:四边形MNPQ是正方形;
(3)如图3,在BE上取点R,使RE=FE,连结RG,RF,若tan∠EBF=.求证:∠GRF=90°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 AB,CD是的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作,垂足为点F,直线BF交直线CD于点G.
(1)如图1当点E在外时,连接,求证BE平分∠GBC;
(2)如图2当点E在内时,连接AC,AG,求证:AC=AG
(3)在(2)条件下,连接BO,若BO平分,求线段EC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=1,记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE交于点P,点B关于点D的对称点为Q,连接PQ.
(1)当△ABD为等边三角形时,
①依题意补全图1;
②PQ的长为 ;
(2)如图2,当α=45°,且BD=时,求证:PD=PQ;
(3)设BC=t,当PD=PQ时,直接写出BD的长.(用含t的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】M(﹣1,),N(1,)是平面直角坐标系xOy中的两点,若平面内直线MN上方的点P满足:45°≤∠MPN≤90°,则称点P为线段MN的可视点.
(1)在点,,,A4(2,2)中,线段MN的可视点为 ;
(2)若点B是直线y=x上线段MN的可视点,求点B的横坐标t的取值范围;
(3)直线y=x+b(b≠0)与x轴交于点C,与y轴交于点D,若线段CD上存在线段MN的可视点,直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com