精英家教网 > 初中数学 > 题目详情
19.下列图形中既是轴对称图形又是中心对称图形的是(  )
A.
等边三角形
B.
平行四边形
C.
正五边形
D.

分析 根据中心对称图形与轴对称图形的概念进行判断即可.

解答 解:等边三角形是轴对称图形不是中心对称图形;
平行四边形不是轴对称图形是中心对称图形;
正五边形是轴对称图形不是中心对称图形;
圆是轴对称图形又是中心对称图形,
故选:D.

点评 本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:
①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=$\frac{18}{5}$.
其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)
节目类型新闻体育动画娱乐戏曲
人数3690ab27
根据表、图提供的信息,解决以下问题:
(1)计算出表中a、b的值;
(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;
(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为9π.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:
   参加社区活动次数的频数、频率分布表
活动次数x频数频率
0<x≤3100.20
3<x≤6a0.24
6<x≤9160.32
9<x≤1260.12
12<x≤15mb
15<x≤182n
根据以上图表信息,解答下列问题:
(1)表中a=12,b=0.08;
(2)请把频数分布直方图补充完整(画图后请标注相应的数据);
(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.已知M=$\frac{2}{9}$a-1,N=a2-$\frac{7}{9}$a(a为任意实数),则M、N的大小关系为(  )
A.M<NB.M=NC.M>ND.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.
(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)
(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)
(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)

查看答案和解析>>

同步练习册答案