精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB90°CD是斜边AB上的中线,以CD为直径的⊙O分别交ACBC于点MN,过点NNEAB,垂足为E

1)若⊙O的半径为AC6,求BN的长;

2)求证:NE与⊙O相切.

【答案】14;(2)见解析

【解析】

1)由直角三角形斜边上的中点到三顶点距离相等,得BDCD,又由直径所对的圆周角是直角得DNBC,由三线合一知BNNC,即可求得答案;

2)证明切线,一般先把圆心和切点连接,然后证明垂直,由(1)知,通过角的转化,即可证明ONNE,从而证得结论.

1)连接DNON

∵⊙O的半径为

CD5

∵∠ACB90°CD是斜边AB上的中线,

BDCDAD5

AB10

CD为直径

∴∠CND90°,即DNBC,且BDCD

BNNC4

2)∵∠ACB90°D为斜边的中点,

∴∠BCD=∠B

OCON

∴∠BCD=∠ONC

∴∠ONC=∠B

ONAB

NEAB

ONNE

NE为⊙O的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,是内心,边上一点,以点为圆心,为半径的经过点,交于点.

1)求证:的切线;

2)连接,若,求圆心的距离及的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系xOy中的点PC,给出如下定义:连接PCC于点N,若点P关于点N的对称点QC的内部,则称点PC的外称点.

1)当O的半径为1时,

在点D(﹣1,﹣1),E20),F04)中,O的外称点是   

若点Mmn)为O的外称点,且线段MOO于点G,求m的取值范围;

2)直线y=﹣x+b过点A11),与x轴交于点BT的圆心为Tt0),半径为1.若线段AB上的所有点都是T的外称点,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°∠A的平分线交BCDEAB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.

求证:(1AC⊙D的切线;(2AB+EB=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+5的图象与坐标轴交于AB两点,与反比例函数y的图象交于MN两点,过点MMCy轴于点C,且CM1,过点NNDx轴于点D,且DN1.已知点Px轴(除原点O外)上一点.

1)直接写出MN的坐标及k的值;

2)将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由;

3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以PSMN四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的xy的取值构成有序数对(xy),所有这样的有序数对(xy)构成的集合称为二元一次不等式(组)的解集.如:x+y3是二元一次不等式,(14)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标.于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.

1)已知A1),B 1,﹣1),C 2,﹣1),D(﹣1,﹣1)四个点,请在直角坐标系中标出这四个点,这四个点中是xy2≤0的解的点是   

2)设的解集在坐标系内所对应的点形成的图形为G

①求G的面积;

Pxy)为G内(含边界)的一点,求3x+2y的取值范围;

3)设的解集围成的图形为M,直接写出抛物线yx2+2mx+3m2m1与图形M有交点时m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数图象的顶点为,其图象与轴的交点的横坐标分别为.与轴负半轴交于点,在下面五个结论中:

;②;③;④只有当时,是等腰直角三角形;使为等腰三角形的值可以有四个.

其中正确的结论有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣10),其部分图象如图所示,下列结论:

①4acb2

方程 的两个根是x1=1x2=3

③3a+c0

y0时,x的取值范围是﹣1≤x3

x0时,yx增大而增大

其中结论正确的个数是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线中,函数值y与自变量之间的部分对应关系如下表:

0

1

y

0

1)求该抛物线的表达式;

2)如果将该抛物线平移,使它的顶点移到点M2,4)的位置,那么其平移的方法是____________.

查看答案和解析>>

同步练习册答案