精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒数学公式个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;

解:(1)由题意得
解得:a=,b=-

(2)①由(1)知二次函数为y=x2-x-2
∵A(4,0),∴B(-1,0),C(0,-2)
∴OA=4,OB=1,OC=2
∴AB=5,AC=2,BC=
∴AC2+BC2=25=AB2
∴△ABC为直角三角形,且∠ACB=90°
∵AE=2t,AF=t,∴==
又∵∠EAF=∠CAB,∴△AEF∽△ACB
∴∠AEF=∠ACB=90°
∴△AEF沿EF翻折后,点A落在x轴上点D处;
由翻折知,DE=AE,∴AD=2AE=4t,EF=AE=t
假设△DCF为直角三角形
当点F在线段AC上时
ⅰ)若C为直角顶点,则点D与点B重合,如图2
∴AE=AB=
t=÷2=
ⅱ)若D为直角顶点,如图3
∵∠CDF=90°,∴∠ODC+∠EDF=90°
∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°
∴∠ODC=∠OBC,∴BC=DC
∵OC⊥BD,∴OD=OB=1
∴AD=3,∴AE=
∴t=
当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形
综上所述,存在时刻t,使得△DCF为直角三角形,t=或t=
②ⅰ)当0<t≤时,重叠部分为△DEF,如图1、图2
∴S=×2t×t=t2
ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4
过点G作GH⊥BE于H,设GH=x
则BH=,DH=2x,∴DB=
∵DB=AD-AB=4t-5
=4t-5,∴x=(4t-5)
∴S=S△DEF-S△DBG=×2t×t-(4t-5)×(4t-5)=-t2+t-
ⅲ)当2<t≤时,重叠部分为△BEG,如图5
∵BE=DE-DB=2t-(4t-5)=5-2t,GE=2BE=2(5-2t)
∴S=×(5-2t)×2(5-2t)=4t2-20t+25.

分析:(1)根据抛物线图象经过点A以及“当x=-2和x=5时二次函数的函数值y相等”两个条件,列出方程组求出待定系数的值.
(2)①首先由抛物线解析式能得到点A、B、C三点的坐标,则线段OA、OB、OC的长可求,进一步能得出AB、BC、AC的长;首先用t 表示出线段AD、AE、AF(即DF)的长,则根据AE、EF、OA、OC的长以及公共角∠OAC能判定△AEF、△AOC相似,那么△AEF也是一个直角三角形,及∠AEF是直角;若△DCF是直角,可分成三种情况讨论:
1、点C为直角顶点,由于△ABC恰好是直角三角形,且以点C为直角顶点,所以此时点B、D重合,由此得到AD的长,进而求出t的值;
2、点D为直角顶点,此时∠CDB与∠CBD恰好是等角的余角,由此可证得OB=OD,再得到AD的长后可求出t的值;
3、点F为直角顶点,当点F在线段AC上时,∠DFC是锐角,而点F在射线AC的延长线上时,∠DFC又是钝角,所以这种情况不符合题意.
②此题需要分三种情况讨论:
1、当点E在点A与线段AB中点之间时,两个三角形的重叠部分是整个△DEF;
2、当点E在线段AB中点与点O之间时,重叠部分是个不规则四边形,那么其面积可由大直角三角形与小钝角三角形的面积差求得;
3、当点E在线段OB上时,重叠部分是个小直角三角形.
点评:此题主要考查的是动点函数问题,涉及了函数解析式的确定、直角三角形以及相似三角形的判定和性质、等腰三角形的性质以及图形面积的解法等综合知识;第二题的两个小题涉及的情况较多,一定要根据动点的不同位置来分类讨论,抓住动点的关键位置来确定未知数的取值范围是解题的关键所在.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案