【题目】如图1,点A在第一象限,轴于B点,连结,将折叠,使点落在x轴上,折痕交边于D点,交斜边于E点,(1)若A点的坐标为,当时,点的坐标是______;(2)若与原点O重合,,双曲线的图象恰好经过D,E两点(如图2),则____.
【答案】(,0)
【解析】
(1)由题意可求得OA的长,再根据三角函数与折叠的性质可得AE:OE的值,进而可求得AE与OE的长,然后由勾股定理求得OA′的长即得答案;
(2)首先设点A的坐标为(2a,2b),进而可表示出点E和点D的坐标,然后在Rt△OBD和Rt△OAB中,利用勾股定理可得关于a、b的方程组,解方程组即可求出a、b的值,进而可得结果.
解:(1)∵AB⊥x轴,A点的坐标为(4,3),∴OB=4,AB=3,∴OA=,
∵EA′∥AB,∴EA′⊥x轴,∴sin∠AOB=,
由折叠的性质可得:A′E=AE,∴AE:OE=3:5,
∴A′E=AE=,OE=,
∴,
∴点A′的坐标是:(,0);
(2)设点A的坐标为:(2a,2b),
∵A′与原点O重合,∴点E的坐标为:(a,b),
∵双曲线的图象恰好经过D、E两点,∴k=ab,
∴点D的坐标为:(2a,b),
∴AB=2b,BD=b,OB=2a,
由折叠的性质可得:OD=AD=AB﹣BD=,
在Rt△OBD中,OD2=OB2+BD2,即()2=(2a)2+(b)2①,
在Rt△OAB中,OA2=OB2+AB2,即42=(2a)2+(2b)2②,
联立①②解得:,∴k=ab=.
故答案为:(1)(,0);(2).
科目:初中数学 来源: 题型:
【题目】杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,且AB=6,点M为⊙O外一点,且MA,MC分别切⊙O于点A、C.点D是两条线段BC与AM延长线的交点.
(1)求证:DM=AM;
(2)直接回答:
①当CM为何值时,四边形AOCM是正方形?
②当CM为何值时,△CDM为等边三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形 ABCD 中,AD=6,点 E 是对角线 AC 上一点,连接 DE,过点 E 作 EF⊥ ED,交 AB 于点 F,连接 DF,交 AC 于点 G,将△EFG 沿 EF 翻折,得到△EFM,连接DM,交 EF 于点 N,若点 F 是 AB 边的中点,则 △EDM 的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y=的图象经过点(﹣3,2).
(1)求它的解析式;
(2)在直角坐标中画出该反比例函数的图象;
(3)若﹣3<x<﹣2,求y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象在第一象限交于A,B两点,A点的坐标为,B点的坐标为,连接,过B作轴,垂足为C.
(1)求一次函数和反比例函数的表达式;
(2)在射线上是否存在一点D,使得是直角三角形,求出所有可能的D点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE,CD,F为BE的中点,连接AF.
(1)如图①,当∠BAE=90°时,求证:CD=2AF;
(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=–1,P为抛物线上第二象限的一个动点.
(1)求抛物线的解析式并写出其顶点坐标;
(2)当点P的纵坐标为2时,求点P的横坐标;
(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线y=x2﹣2mx+m2﹣1
(1)求抛物线的对称轴(用含m的式子去表示);
(2)若点(m﹣2,y1),(m,y2),(m+3,y3)都在抛物线y=x2﹣2mx+m2﹣1上,则y1、y2、y3的大小关系为 ;
(3)直线y=﹣x+b与x轴交于点A(3,0),与y轴交于点B,过点B作垂直于y轴的直线l与抛物线y=x2﹣2mx+m2﹣1有两个交点,在抛物线对称轴右侧的点记为P,当△OAP为钝角三角形时,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com