精英家教网 > 初中数学 > 题目详情
在△ABC中,∠C=90°,DE垂直平分斜边AB,且分别交AB、BC于D、E,若∠CAB=∠B+30°.
(1)求∠AEB的度数;     
(2)若CE=
3
cm,求BE的长.
分析:(1)先根据线段垂直平分线的性质得出AE=BE,故∠B=∠EAD,再根据∠CAB=∠B+30°可得出∠CAE的度数,再由直角三角形的性质求出∠AEC的度数,根据平角的定义即可得出结论;
(2)先根据直角三角形的性质求出CE的长,由(1)知AE=BE,故可得出结论.
解答:解:(1)∵DE垂直平分斜边AB,
∴AE=BE,
∴∠B=∠EAD,
∵∠CAB=∠B+30°,
∴∠CAE=30°,
∵∠C=90°,
∴∠AEC=90°-∠CAE=90°-30=60°,
∴∠AEB=180°-∠AEC=180°-60°=120°;

(2)∵Rt△ACE中,∠CAE=30°,CE=
3
cm,
∴AE=2
3
cm,
∵由(1)知,AE=BE,
∴BE=2
3
cm.
点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案