A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①由条件证明△ABD≌△ACE,就可以得到结论;
②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°而得出结论;
③由条件知∠ABC=∠ABD+∠DBC=45°,由∠DBC+∠ACE=90°,就可以得出结论;
④△BDE为直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠BD2就可以得出结论.
解答 解:①∵∠BAC=∠DAE,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,
∵$\left\{\begin{array}{l}{AD=AE}\\{∠BAD=∠CAE}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=CE.故①正确;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠DBC+∠ACB=90°,
∴∠DBC+∠ACE+∠ACB=90°,
∴∠BDC=180°-90°=90°.
∴BD⊥CE;故②正确;
③∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,故③错误;
④∵BD⊥CE,
∴BE2=BD2+DE2.
∵∠BAC=∠DAE=90°,AB=AC,AD=AE,
∴DE2=2AD2,BC2=2AB2.
∵BC2=BD2+CD2≠BD2,
∴2AB2=BD2+CD2≠BD2,
∴BE2≠2(AD2+AB2).故④错误,
故选:B.
点评 本题考查了全等三角形的性质和判定的应用,垂直的性质和判定的应用,等腰直角三角形的性质的应用,勾股定理的应用,能利用全等三角形的性质和判定求解是解此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 一个数的相反数一定比0小 | |
B. | 互为相反数的两个数的绝对值相等 | |
C. | 一个数的绝对值一定是正数 | |
D. | 若两个数的绝对值相等,则这两个数相等 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | AB=A1B1 | B. | AB=A1C1 | C. | CA=A1C1 | D. | ∠A=∠C1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com