精英家教网 > 初中数学 > 题目详情
已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为
 

精英家教网
分析:分PD=OD(P在右边),PD=OD(P在左边),OP=OD三种情况,根据题意画出图形,作PQ垂直于x轴,找出直角三角形,根据勾股定理求出OQ,然后根据图形写出P的坐标即可.
解答:解:当OD=PD(P在右边)时,根据题意画出图形,如图所示:
精英家教网
过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=
1
2
OA=5,
根据勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,则P1(8,4);
当PD=OD(P在左边)时,根据题意画出图形,如图所示:
精英家教网
过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,
根据勾股定理得:QD=3,故OQ=OD-QD=5-3=2,则P2(2,4);
当PO=OD时,根据题意画出图形,如图所示:
精英家教网
过P作PQ⊥x轴交x轴于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,
根据勾股定理得:OQ=3,则P3(3,4),
综上,满足题意的P坐标为(2,4)或(3,4)或(8,4).
故答案为:(2,4)或(3,4)或(8,4)
点评:这是一道代数与几何知识综合的开放型题,综合考查了等腰三角形和勾股定理的应用,属于策略和结果的开放,这类问题的解决方法是:数形结合,依理构图解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,O为坐标原点,半径为4的⊙Q与y轴相切于点O,圆心Q在x轴的负半轴上.精英家教网
(1)请直接写出圆心Q的坐标;
(2)设一次函数y=-2mx+2m的图象与x轴的正半轴、y轴的正半轴分别相交于点A、B,且T在y轴上,OT=2,连接QT,∠OQT=∠OBA.
①求m的值;
②试问在y=-2mx+2m的图象上是否存在点P,使得⊙P与⊙Q、y轴都相切?若存在,请求出圆心P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.
(1)当t为何值时,四边形PODB是平行四边形?
(2)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值;若不存在,请说明理由;
(3)△OPD为等腰三角形时,写出点P的坐标(不必写过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上以每秒1个单位的速度由C向B运动.
(1)求梯形ODPC的面积S与时间t的函数关系式.
(2)t为何值时,四边形PODB是平行四边形?
(3)在线段PB上是否存在一点Q,使得ODQP为菱形.若存在求t值,若不存在,说明理由.
(4)当△OPD为等腰三角形时,求点P的坐标.

查看答案和解析>>

同步练习册答案