分析 作FM⊥AD于M,则∠FME=90°,FM=AB=3cm,由折叠的性质得出BE=DE,∠BEF=∠DEF,再求出BF=BE,设AE=x,则BE=DE=9-x,根据勾股定理得出方程,解方程求出AE,得出DE、BF、EM,根据勾股定理求出EF即可,
解答 解:作FM⊥AD于M,
则∠FME=90°,FM=AB=3,
根据题意得:BE=DE,∠BEF=∠DEF,
∵四边形ABCD是矩形,
∴∠A=90°,AD∥BC,
∴∠BFE=∠DEF,
∴∠BEF=∠BFE,
∴BF=BE,
设AE=x,则BE=DE=BF=9-x,
根据勾股定理得:
AB2+AE2=BE2,即32+x2=(9-x)2,
解得:x=4,
∴AE=4,
∴DE=BF=5,
∴CF=DM=4,
∴EM=1,
根据勾股定理得:EF=$\sqrt{E{M}^{2}+F{M}^{2}}$=$\sqrt{10}$,
答:DE的长为5,折痕EF的长为$\sqrt{10}$.
点评 本题考查了翻折变换的性质、矩形的性质、勾股定理、等腰三角形的判定;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com