精英家教网 > 初中数学 > 题目详情
已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),过点C作精英家教网⊙O的切线CD,过A作CD的垂线,垂足是M点.
(1)如图1,若CD∥AB,求证:AM是⊙O的切线.
(2)如图2,若AB=6,AM=4,求AC的长.
分析:(1)连接OC,由CD是⊙O的切线,得出OC⊥CD,∠OCM=90°.再由CD∥AB,得出∠OCM+∠COA=180°.又知AM⊥CD,得到∠AMC=90°.在四边形OAMC中∠OAM=90°.又知OA为⊙O的半径,从而得到AM是⊙O的切线.
(2)连接OC,BC.因为CD是⊙O的切线,所以OC⊥CD,∠OCM=90°.再由AM⊥CD,得到∠AMC=90°,OC∥AM,∠1=∠2.然后由OA=OC,得出∠3=∠2.即∠BAC=∠CAM.又因为AB是直径,所以∠ACB=90°,证得△BAC∽△CAM.所以
AB
AC
=
AC
AM
.即AC2=AB•AM=24.从而解得AC=2
6
解答:精英家教网解:(1)证明:连接OC.
∵CD是⊙O的切线,
∴OC⊥CD.∴∠OCM=90°.
∵CD∥AB,
∴∠OCM+∠COA=180°.
∵AM⊥CD,
∴∠AMC=90°.
∴在四边形OAMC中∠OAM=90°.
∵OA为⊙O的半径,
∴AM是⊙O的切线.

(2)连接OC,BC.
∵CD是⊙O的切线,
∴OC⊥CD.
∴∠OCM=90°.
∵AM⊥CD,
∴∠AMC=90°.
∴OC∥AM.
∴∠1=∠3.
∵OA=OC,
∴∠3=∠2.即∠BAC=∠CAM.
易知∠ACB=90°,
∴△BAC∽△CAM.
AB
AC
=
AC
AM

即AC2=AB•AM=24.
AC=2
6
点评:本题考查了切线的判断与性质以及相似三角形的判定和性质,此题难度适中,但比较繁琐,一定要细心才行,不然很容易出错.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,∠CAB=30°,过点C的⊙O的切线交AB延长线于D,若OD=4
3
,那么弦AC长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连接AC.
(1)求证:△ABC∽△POA;
(2)若OB=2,OP=
72
,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,点C在⊙O上,直线CD与AB的延长线交于点D,∠COB=2∠DCB.精英家教网
(1)求证:CD是⊙O的切线;
(2)点E是
AB
的中点,CE交AB于点F,若AB=4,求EF•EC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,AD切⊙O于点A,
EC
=
CB
.给出下列结论:
①BA⊥DA;②OC∥AE;③OD⊥AC;④∠EAC=
1
4
∠EOB.
其中正确的结论有
①②④
①②④
.(把你认为正确的结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知AB是⊙O的直径,弧AC的度数是30°.如果⊙O的直径为4,那么AC2等于(  )

查看答案和解析>>

同步练习册答案