【题目】如图1,已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,以CE、BC为边作平行四边形CEFB,连CD、CF.
(1)如图2,△ADE绕点A旋转一定角度,求证:CD=CF;
(2)如图3,AE=,AB=,将△ADE绕A点旋转一周,当四边形CEFB为菱形时,求CF的长.
【答案】(1)见解析 (2)6或4
【解析】
(1)连接FD,证明△ADC≌△EDF(SAS),推出△DFC为等腰直角三角形即可解决问题;
(2)分两种情形分别画出图形,利用(1)中结论求出CD即可解决问题.
(1)解:连接FD,设DE与AC交于点G
∵四边形CEFB是平行四边形
∴BC∥EF
∵AC⊥BC
∴EF⊥AC
∵AD⊥DE,EF⊥AC,∠DGA=∠CGE
∴∠DAC=∠DEF,
又∵AD=ED,AC=EF,
∴△ADC≌△EDF(SAS),
∴DC=DF,∠ADC=∠EDF,即∠ADE+∠EDC=∠FDC+∠EDC,
∴∠FDC=∠ADE=90°,
∴△DFC为等腰直角三角形,
∴CD=CF;
(2)解:如图,设AE与CD的交点为M,
∵四边形CEFB为菱形
∴CE=CB
∵△ADE、△ACB为等腰直角三角形
∴CA=CB
∴CE=CA,
∵DE=DA,
∴CD垂直平分AE,
∵AE=,AB=
∴DM=EM=AE=,AC=BC=AB=
∴CE=
∴CM==,
∴CD=DM+CM=,
∵CF=CD,
∴CF=6;
如图,设AE与CD的交点为M,
同法可得CD=CM-DM=-=,
∴CF=CD=4;
综上所述,满足条件的CF的值为6或4.
科目:初中数学 来源: 题型:
【题目】如图,四边形中,点到直线,的距离相等为, ,平分,长为n,且,四边形的面积为6.
(1)求线段的长;
(2)为延长线上一点,,交延长线于,探究、、的数量关系并说明理由;
(3)作平行交延长线于,平分,反向延长线交延长线于,若设,,试求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC与BD相交于点O,∠ABC∶∠BAD=1∶2,AC∥BE,CE∥BD.
(1)求∠DBC的度数;
(2)求证:四边形OBEC是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为66万元;本周已售出2辆A型车和1辆B型车,销售额为42万元.
(1)求每辆A型车和B型车的售价各为多少元.
(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不超过84万元.问最多可以购买多少辆B型号的新能源汽车?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的布袋里装有3个小球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)求摸出1个小球是白球的概率;
(2)摸出1个小球,记下颜色后放回,并搅均,再摸出1个小球.求两次摸出的小球恰好颜色不同的概率.(要求画树状图或列表)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是( )
A. π B. C. 3+π D. 8﹣π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:
x(元) | 180 | 260 | 280 | 300 |
y(间) | 100 | 60 | 50 | 40 |
(1)求y与x之间的函数表达式;
(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com