3£®ÔĶÁ²ÄÁÏ£º¶ÔÓÚÈκÎÊý£¬ÎÒÃǹ涨·ûºÅ$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$µÄÒâÒåÊÇ$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc£®
ÀýÈ磺$|\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}|$=1¡Á4-2¡Á3=-2£®
£¨1£©°´ÕÕÕâ¸ö¹æ¶¨£¬ÇëÄã¼ÆËã$|\begin{array}{l}{1}&{-2}\\{3}&{-1}\end{array}|$|µÄÖµ£»
£¨2£©°´ÕÕÕâ¸ö¹æ¶¨£¬ÇëÄã¼ÆËã £¨x-2£©2+£¨y+$\frac{1}{5}$£©2=0ʱ£¬$|\begin{array}{l}{-3{x}^{2}+y}&{{x}^{2}+y}\\{3}&{-2}\end{array}|$Öµ£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÖªÁгöʽ×ÓÇó½â£®
£¨2£©ÏÈ»¯¼òËùÇóµÄʽ×Ó£¬È»ºó½«xÓëyµÄÖµ´úÈë¼´¿ÉÇó³ö´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£º$|\begin{array}{l}{1}&{-2}\\{3}&{-1}\end{array}|$=1¡Á£¨-1£©-£¨-2£©¡Á3=-1+6=5£»
£¨2£©¡ß£¨x-2£©2+£¨y+$\frac{1}{5}$£©2=0£¬
¡àx=2£¬y=-$\frac{1}{5}$£¬
¡à$|\begin{array}{l}{-3{x}^{2}+y}&{{x}^{2}+y}\\{3}&{-2}\end{array}|$=-2£¨-3x2+y£©-3£¨x2+y£©
=6x2-2y-3x2-3y
=3x2-5y
=3¡Á4-5¡Á£¨-$\frac{1}{5}$£©
=12+1
=13

µãÆÀ ±¾Ì⿼²éж¨ÒåÐÍÔËË㣬Éæ¼°ÕûʽµÄ¼Ó¼õ£¬ÓÐÀíÊý»ìºÏÔËËãµÄ£¬ÌâÄ¿½ÏΪ×ۺϣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªxy¡Ù0£¬ÇÒxy=y-x£¬Ôò·Öʽ$\frac{1}{x}$-$\frac{1}{y}$µÄֵΪ£¨¡¡¡¡£©
A£®xyB£®y-xC£®1D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÒÑÖªE£¬FÊÇÕý·½ÐÎABCDµÄ±ßBCºÍCDÉϵÄÁ½µã£¬ÇÒAE=AF£¬ÄÇô£¬µ±AB=4ʱ£¬¡÷AEFµÄÃæ»ýSÊÇCEµÄ³¤xµÄº¯ÊýÂð£¿Èç¹ûÊÇ£¬Ð´³öËüµÄ±í´ïʽ£¬²¢»Ø´ðxÈ¡ºÎֵʱ£¬¡÷AEFµÄÃæ»ýÊÇ×î´óµÄ£¬Çó³ö´Ëʱ¡÷AEFµÄÃæ»ýÓëÕý·½ÐÎABCDµÄÃæ»ýÖ®±È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªk=$\frac{a+b-c}{c}$=$\frac{a-b+c}{b}$=$\frac{-a+b+c}{a}$£¬Ôòk=1»ò-2£»Èôn2+16+$\sqrt{m+6}$=8n£¬Ôò¹ØÓÚxµÄÒ»´Îº¯Êýy=kx+n-mµÄͼÏóÒ»¶¨¾­¹ýµÚÒ»¡¢¶þÏóÏÞ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ1£¬°ëÔ²OµÄ°ë¾¶r=5cm£¬µãNÊǰ뾶AOÉϵÄÒ»¸ö¶¯µã£¬N´ÓµãA³ö·¢£¬ÑØAO·½ÏòÒÔ1cm/sµÄËÙ¶ÈÏòµãOÔ˶¯£¬¹ýµãN×÷MN¡ÍAB£¬½»°ëÔ²OÓÚµãM£¬ÉèÔ˶¯Ê±¼äΪts£®
£¨1£©µ±tµÈÓÚ¶àÉÙʱ£¬MN=3cm£¿
£¨2£©Èçͼ2£¬ÒÔMNΪ±ßÔÚ°ëÔ²OÄÚ²¿×÷Õý·½ÐÎMNPQ£¬Ê¹µÃµãPÂäÔÚABÉÏ£¬µãQÂäÔÚ°ëÔ²ÄÚ£¨»ò°ëÔ²ÉÏ£©£¬ÉèÕý·½ÐÎMNPQµÄÃæ»ýΪS£¬ÇóSÓëtÖ®¼äµÄº¯Êý¹ØϵʽÒÔ¼°×Ô±äÁ¿tµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Æ´Í¼ÓëÊýѧ£º
£¨1£©Èçͼ1£¬¹Û²ì×ó±ß·½¸ñͼÖÐÒõÓ°ËùʾµÄͼÐΣ¨×¢£ºÃ¿Ò»Ð¡·½¸ñµÄ±ß³¤Îª1£©£®Èô½«Ëü¼ô¿ª£¬¿ÉÖØÐÂÆ´³ÉÒ»¸öÕý·½ÐΣ¬ÇëÄãÔÚÓұߵķ½¸ñͼÖл­³öÄãËùÆ´³ÉµÄÕý·½ÐΣ¬¿ÉÓÃÒõÓ°Ôö¼ÓЧ¹û£¬²¢Ð´³öÄãËùÆ´³ÉµÄÕý·½Ðεı߳¤$\sqrt{5}$£»
£¨2£©Èçͼ2ÊÇÓÃ4¸öÏàͬµÄС³¤·½ÐÎÓë1¸öÕý·½ÐÎÏâǶ¶ø³ÉµÄÕý·½ÐÎͼ°¸£®ÈôÓÃx¡¢y±íʾС³¤·½ÐεÄÁ½±ß³¤£¨x£¾y£©£¬ÔòÇëÀûÓÃͼÖеÄÃæ»ý¹Øϵֱ½ÓдÀ´´úÊýʽx+y¡¢x-y¡¢xyÈýÕßÖ®¼ä´æÔÚ×ŵÈʽ¹Øϵ£º£¨x+y£©2-4xy=£¨x-y£©2£»
£¨3£©Èçͼ3£¬ÓÒͼÊÇ2002ÄêÔÚ±±¾©ÕÙ¿ªµÄ¹ú¼ÊÊýѧ¼Ò´ó»áµÄ»á±ê£¬ËüÀ´Ô´ÓÚÎÒ¹ú¹Å´úÖøÃûµÄ¡°ÕÔˬÏÒͼ¡±£®ËüÊÇÓÉ4¸öÈ«µÈµÄÖ±½ÇÈý½ÇÐΣ¨Èç×óͼ£¬Èý±ß³¤·Ö±ðΪBC=a¡¢AC=b¡¢AB=c£©¼°ÖмäÒ»¸öСÕý·½ÐÎÆ´³ÉµÄ´óÕý·½ÐΣ®ÇëÄãÀûÓÃͼÖеÄÃæ»ý¹ØϵÍƵ¼³öÒ»¸öÓйØÖ±½ÇÈý½ÇÐÎÈý±ß³¤a¡¢b¡¢c¼ò½àµÄµÈÁ¿¹Øϵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬¡ÑOÊÇ¡÷ABCµÄÍâ½ÓÔ²£¬Ö±ÏßlÓë¡ÑOÏàÇÐÓÚµãD£¬ÇÒl¡ÎBC£®
£¨1£©ÇóÖ¤£ºADƽ·Ö¡ÏBAC£»
£¨2£©×÷¡ÏABCµÄƽ·ÖÏßBE½»ADÓÚµãE£¬ÇóÖ¤£ºBD=DE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®»ð²ñ°ô°´Í¼ÖÐËùʾµÄ·½·¨´îͼÐΣ®

£¨1£©ÌîдÏÂ±í£º
Èý½ÇÐεĸöÊý1234¡­
»ð²ñ°ôµÄ¸ùÊý3579¡­
£¨2£©µ±Èý½ÇÐεĸöÊýÊÇ15ʱ£¬»ð²ñ°ôµÄ¸ùÊýÓжàÉÙ£¿
£¨3£©µ±Èý½ÇÐεĸöÊýÊÇnʱ£¬»ð²ñ°ôµÄ¸ùÊýÈçºÎ±íʾ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®£¨1£©½â·½³Ì£º$\frac{x-3}{x-2}$=$\frac{3}{2-x}$-1
£¨2£©Èô¹ØÓÚxµÄ·½³Ì$\frac{a}{{x}^{2}-4}$-$\frac{1}{x+2}$=0Î޽⣬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸