如图所示,将长方形ABCD沿直线BD折叠,使C点落在C′处,BC′交AD于E.
(1)求证:BE=DE;
(2)若AD=8,AB=4,求△BED的面积.
(1)见解析 (2)10
解析试题分析:(1)先根据折叠的性质得出∠1=∠2,再由矩形的对边平行,内错角相等,所以∠1=∠3,然后根据角之间的等量代换可知DE=BE;
(2)设DE=x,则AE=8﹣x,BE=x,在△ABE中,运用勾股定理得到BE2=AB2+AE2,列出关于x的方程,解方程求出x的值,再根据三角形的面积公式,即可求得△BED的面积.
(1)证明:∵△BDC′是由△BDC沿直线BD折叠得到的,
∴∠1=∠2,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠1=∠3,
∴∠2=∠3,
∴BE=DE;(2)解:设DE=x,则AE=AD﹣DE=8﹣x,
在△ABE中,∵∠A=90°,BE=DE=x,
∴BE2=AB2+AE2,
∴x2=42+(8﹣x)2,
∴x=5,
∴△BED的面积=DE×AB=×5×4=10.
点评:此题通过折叠变换考查了三角形的有关知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后对应边、对应角相等.
科目:初中数学 来源:浙教版(2014) 八年级下 题型:
|
查看答案和解析>>
科目:初中数学 来源:2015届初中数学苏教版八年级上册第一章练习卷(解析版) 题型:选择题
已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B= ∠E=90°,AC⊥CD,则不正确的结论是( )
A.∠A与∠D互为余角 B.∠A=∠2
C.△ABC≌△CED D.∠1=∠2
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,等腰梯形ABCD中,AD∥BC,∠B=450,P是BC边上一点,△PAD的面积为,设AB=x,AD=y。
(1)求y与x的函数关系式;
(2)若∠APD=450,当y=1时,求PB·PC的值;
(3)若∠APD=900,求y的最小值。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.
(1)求证:CD=AN;
(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com