【题目】如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点距守门员多少米?(取)
(3)运动员乙要抢到第二个落点,他应再向前跑多少米?
(取)
科目:初中数学 来源: 题型:
【题目】将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,
①求菱形的边长;
②求折痕EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰中,,点在边的反向延长线上,且,点在边的延长线上,且,设,.
(1)求线段的长;
(2)求关于的函数解析式,并写出定义域;
(3)当平分时,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,的顶点在正方形两条对角线的交点处,,将绕点旋转,旋转过程中的两边分别与正方形的边和交于点和点(点与点,不重合).
(1)如图①,当时,求,,之间满足的数量关系,并证明;
(2)如图②,将图①中的正方形改为的菱形,其他条件不变,当时,(1)中的结论变为,请给出证明;
(3)在(2)的条件下,若旋转过程中的边与射线交于点,其他条件不变,探究在整个运动变化过程中,,,之间满足的数量关系,直接写出结论,不用加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2-3与y2=(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45°和65°,点A距地面2.3米,点B距地面10.8米,为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?结果保留整数,参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.
(1)试判断BD与⊙O的位置关系,并说明理由;
(2)当AB=BE=1时,求⊙O的面积;
(3)在(2)的条件下,求HG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:
①点E和点F,点B和点D是关于中心O对称点;
②直线BD必经过点O;
③四边形DEOC与四边形BFOA的面积必相等;
④△AOE与△COF成中心对称.
其中正确的个数为( )
A.1 B.2 C.3 D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com