分析 (1)只要证明∠ACE=∠BCD,根据SAS即可证明.
(2)结论:AE∥BC.只要证明∠CAE=∠ACB=60°即可.
解答 (1)证明:∵△ABC,△DCE为等边三角形,
∴AC=BC,EC=DC,∠ACB=∠ECD=∠B=60°,
∴∠ACE=∠BCD,
在∠ACE和△BCD中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACE=∠BCD}\\{EC=DC}\end{array}\right.$,
∴△ACE≌△BCD(SAS),
(2)解:结论:AE∥BC.
理由:∵△ACE≌△BCD,
∴∠EAC=∠DBC=60°,
∵∠ACB=∠DBC=60°,
∴∠EAC=∠ACB=60°,
∴AE∥BC.
点评 本题考查等边三角形的性质、全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形,学会利用全等三角形的性质解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4032×108 | B. | 4.032×1010 | C. | 4.032×1011 | D. | 4.032×1012 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com