试题分析:(1)连接OE、OC,先根据“SSS”证得△OBC≌△OEC,即得∠OBC=∠OEC,再结合DE为⊙O的切线即可证得结论;
(2)过点D作DF⊥BC于点F,先根据切线的性质可得DA=DE,CE=CB,设BC为
,则CF=x-2,DC=x+2,在Rt△DFC中根据勾股定理即可列方程求得x的值,根据平行线的性质可得∠DAE=∠EGC,再根据等边对等角可得∠DAE=∠AED,即可得到∠ECG=∠CEG,从而可以求得BG的长,再根据勾股定理即可AG的长,然后证得△ADE∽△GCE,根据相似三角形的性质即可求得结果.
(1)连接OE、OC
∵CB=CE,OB=OE,OC=OC
∴△OBC≌△OEC
∴∠OBC=∠OEC
又∵DE与⊙O相切于点
∴∠OEC=90°
∴∠OBC=90°
∴BC为⊙
的切线;
(2)过点D作DF⊥BC于点F,
∵AD、DC、BG分别切⊙O于点A、E、B
∴DA=DE,CE="CB"
设BC为
,则CF=x-2,DC=x+2
在Rt△DFC中,
解得
∵AD∥BG
∴∠DAE=∠EGC
∵DA=DE
∴∠DAE=∠AED
∵∠AED=∠CEG
∴∠ECG=∠CEG
∴CG=CE=CB=
∴BG=5
∴
∵∠DAE=∠EGC,∠AED=∠CEG
∴△ADE∽△GCE
∴
,即
,解得
.
点评:在证明切线的问题时,一般先连接切点与圆心,再证明垂直即可.