精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,正方形ABOD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OE的解析式为y=2x,直线CF过x轴上的一点C(-
3
5
a
,0)且与OE平行,现正方形以每秒
a
10
的速度匀速沿x轴正方向平行移动,设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.
(1)当0≤t<4时,写出S与t的函数关系式;
(2)当4≤t≤5时,写出S与t的函数关系式,在这个范围内S有无最大值?若有,请求出最大值,若没有请说明理由.
(1)当0≤t<4时,如图1,由图可知OM=
a
10
t

设经过t秒后,正方形移动到A1B1MN
∵当t=4时,BB1=OM=
a
10
×4=
2
5
a
∴点B1在C点左侧
∴夹在两平行线间的部分是多边形COQNG,其面积为:
平行四边形COPG-△NPQ的面积.
∵CO=
3
5
a
,OD=a
∴四边形COPG面积=
3
5
a2
又∵点P的纵坐标为a,代入y=2x得P(
a
2
,a)
∴DP=
a
2
,NP=
a
2
-
a
10
t
由y=2x知:NQ=2NP
∴△NPQ面积=
1
2
•NP•NQ=(
a
2
-
a
10
t)2
∴S=
3
5
a2-(
a
2
-
a
10
t)2=
3
5
a2-
a2
100
(5-t)2=
a2
100
[60-(5-t)2];

(2)当4≤t≤5时,如图2,这时正方形移动到A1B1MN
∵当4≤t≤5时,
2
5
a
≤BB1
1
2
a
,点B1在C、O点之间
∴夹在两平行线间的部分是B1OQNGR,
即平行四边形COPG被切掉了两个小三角形△NPQ和△CB1R,其面积为:
平行四边形COPG的面积-△NPQ的面积-△CB1R的面积
与(1)同理,OM=
a
10
t,NP=
a
2
-
a
10
t,S△NPQ=(
a
2
-
a
10
t)2
∵CO=
3
5
a
,CM=
3
5
a+
a
10
t,B1M=a,
∴CB1=CM-B1M=
3
5
a+
a
10
t-a=
a
10
t-
2
5
a,
∴S△CB1R=
1
2
CB1•B1R=(CB12=(
a
10
t-
2
5
a)2,
∴S=
3
5
a2-(
1
2
a-
a
10
t)2-(
a
10
t-
2
5
a)2=
3
5
a2-
a2
100
[2(t-
9
2
2+
1
2
],
∴当t=
9
2
时,S有最大值,Smax=
119
200
a2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,抛物线经过了边长为1的正方形ABOC的三个顶点A,B,C,则抛物线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
2
mx2-
3
2
mx-2m交x轴于A(x1,0),B(x2,0)交y轴负半轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.
(3)如图点E(2,-5),将直线CE向上平移a个单位与抛物线交于M,N两点,若AM=AN,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c当x=-2时有最大值4,且二次函数图象与直线y=x+1的一个交点为P(m,0),求:
(1)m的值;
(2)二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2-2x+a(a>0)与y轴相交于点A,顶点为M.直线y=
1
2
x+
1
2
a
与x轴相交于B点,与直线AM相交于N点;直线AM与x轴相交于C点
(1)求M的坐标与MA的解析式(用字母a表示);
(2)如图,将△NBC沿x轴翻折,若N点的对应点N′恰好落在抛物线上,求a的值;
(3)在抛物线y=-x2-2x+a(a>0)上是否存在一点P,使得以P、B、C、N为顶点的四边形是平行四边形?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c经过点A(-1,0)、B(3,0)和C(0,-3),线段BC与抛物线的对称轴相交于点P.M、N分别是线段OC和x轴上的动点,运动时保持∠MPN=90°不变.连结MN,设MC=m.
(1)求抛物线的函数解析式;
(2)用含m的代数式表示△PMN的面积S,并求S的最大值;
(3)以PM、PN为一组邻边作矩形PMDN,当此矩形全部落在抛物线与x轴围成的封闭区域内(含边界)时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=(k2-2)x2-4kx+m的对称轴是直线x=2,且它的最低点在直线y=-2x+2上,求:
(1)函数解析式;
(2)若抛物线与x轴交点为A、B与y轴交点为C,求△ABC面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,排球运动员甲站在点O处练习发球,球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.若把球看成点,其运行的高度y(m)与运行的水平距离x(m)是二次函数关系.以O为原点建立平面直角坐标系.
(1)在某一次发球时,甲将球从O点正上方2m的A处发出,已知球的最大飞行高度为2.6m,此时距O点的水平距离为6m.
①求抛物线的解析式.
②球能否越过球网?球会不会出界?请说明理由.
(2)若球的最大飞行高度时距O点的水平距离6m不变,要使球一定能越过球网,又不出边界,求二次函数中二次项系数的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一家电脑公司推出一款新型电脑,投放市场以来,前两个月的利润情况如图所示,该图可以近似地看作抛物线的一部分,其中第x月的利润为y万元,往后y与x满足的关系不变.请结合图象解答下列问题:
(1)求抛物线对应的二次函数解析式;
(2)该公司在经营此款电脑的过程中,第几月的利润最大?最大利润是多少?
(3)公司打算,从月利润下降开始,每月对下月的销售额进行预测,若下月与该月的利润差额超过10万元,则下月就停止销售该产品,请你预测该产品持续销售的月数.

查看答案和解析>>

同步练习册答案