分析 由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AC,然后根据勾股定理即可求出BC.
解答 解:∵四边形ABCD是矩形,
∴∠ABC=90°,OA=$\frac{1}{2}$AC,OB=$\frac{1}{2}$BD,AC=BD,
∴OA=OB,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴OA=AB=1,
∴A=2OA=2,
∴BC=$\sqrt{A{C}^{2}-A{B}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$;
故答案为:$\sqrt{3}$.
点评 本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2\sqrt{3}-π}{π}$ | B. | $\frac{2π\sqrt{3}-9}{9}$ | C. | $\frac{π-\sqrt{3}}{π}$ | D. | $\frac{π\sqrt{3}-4}{9}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}{x+y+z=7}\\{2x+3y=5}\\{y+2x=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{xy=3}\\{y+z=2}\\{x+z=6}\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}{\frac{1}{x}+y+z=7}\\{2x+y+3z=5}\\{x+2y+z=2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=5}\\{3x+2y=9}\end{array}\right.$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com