精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC中,D是AB边上一点,连接CD.
(1)要使△ACD∽△ABC,还需补充一个什么条件?请利用你所补充的条件证明△ACD∽△ABC;
(2)若△ACD∽△ABC,且AD:DB=2,求BC:DC的值.
分析:(1)两角对应相等两三角形相似,故需添加∠ACD=∠B这个条件.
(2)首先根据AD:DB=2,求得AB与AD的比值.再运用相似三角形的性质,求得AC与AB的比值关系.那么根据相似三角形的性质BC:DC的值也就确定.
解答:解:(1)还需补充∠ACD=∠B这个条件.
在△ACD与△ABC中,
∵∠A为公共角,∠ACD=∠B,
∴△ACD∽△ABC;

(2)∵AD:DB=2
AD
AB
=
AD
AD+DB
=
2
2+1
=
2
3

∵△ACD∽△ABC,
BC
DC
=
AB
AC
=
AC
AD

∴AC2=AB•AD=
2
3
AB2,即AC=
6
3
AB,
BC
DC
=
AB
AC
=
AB
6
3
AB
=
6
2
点评:本题考查相似三角形的判定与性质.解决本题的关键是灵活运用两角对应相等两三角形相似这一判定定理,再就是根据AD:DB=2得到AC与AB的比值关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案