精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题:
(1)将⊙A向左平移______个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为______,阴影部分的面积S=______;
(2)求BC的长.

【答案】分析:(1)根据直线和圆相切,则圆心到直线的距离等于圆的半径,知点A′的坐标是(2,1),从而求得移动的距离;阴影部分的面积即为底3、高2的平行四边形的面积;
(2)连接AC,过点A作AD⊥BC于点D.根据垂径定理和勾股定理进行计算.
解答:
解:(1)根据直线和圆相切的位置关系与数量之间的联系,得点A′的坐标是(2,1);
则移动的距离是5-2=3;
根据平移变换的性质,则阴影部分的面积即为图中平行四边形的面积=2×3=6;

(2)如图,连接AC,过点A作AD⊥BC于点D,
则BC=2DC.
由A(5,1)可得AD=1.
又∵半径AC=2,
∴在Rt△ADC中,
DC=
∴BC=2
点评:综合考查了平移变换、垂径定理和勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案