精英家教网 > 初中数学 > 题目详情
(2013•宜宾)如图,抛物线y1=x2-1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.
(1)请直接写出抛物线y2的解析式;
(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;
(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.
分析:(1)写出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可;
(2)根据抛物线解析式求出点A、B的坐标,然后求出∠OBA=45°,再联立两抛物线解析式求出交点C的坐标,再根据∠CPA=∠OBA分点P在点A的左边和右边两种情况求解;
(3)先求出直线OC的解析式为y=
3
2
x,设与OC平行的直线y=
3
2
x+b,与抛物线y2联立消掉y得到关于x的一元二次方程,再根据与OC的距离最大时方程有且只有一个根,然后利用根的判别式△=0列式求出b的值,从而得到直线的解析式,再求出与x轴的交点E的坐标,得到OE的长度,再过点C作CD⊥x轴于D,然后根据∠COD的正弦值求解即可得到h的值.
解答:解:(1)抛物线y1=x2-1向右平移4个单位的顶点坐标为(4,-1),
所以,抛物线y2的解析式为y2=(x-4)2-1;

(2)x=0时,y=-1,
y=0时,x2-1=0,解得x1=1,x2=-1,
所以,点A(1,0),B(0,-1),
∴∠OBA=45°,
联立
y=x2-1
y=(x-4)2-1

解得
x=2
y=3

∴点C的坐标为(2,3),
∵∠CPA=∠OBA,
∴点P在点A的左边时,坐标为(-1,0),
在点A的右边时,坐标为(5,0),
所以,点P的坐标为(-1,0)或(5,0);

(3)存在.
∵点C(2,3),
∴直线OC的解析式为y=
3
2
x,
设与OC平行的直线y=
3
2
x+b,
联立
y=
3
2
x+b
y=(x-4)2-1

消掉y得,2x2-19x+30-2b=0,
当△=0,方程有两个相等的实数根时,△QOC中OC边上的高h有最大值,
此时x1=x2=
1
2
×(-
-19
2
)=
19
4

此时y=(
19
4
-4)2-1=-
7
16

∴存在第四象限的点Q(
19
4
,-
7
16
),使得△QOC中OC边上的高h有最大值,
此时△=192-4×2×(30-2b)=0,
解得b=-
121
16

∴过点Q与OC平行的直线解析式为y=
3
2
x-
121
16

令y=0,则
3
2
x-
121
16
=0,解得x=
121
24

设直线与x轴的交点为E,则E(
121
24
,0),
过点C作CD⊥x轴于D,根据勾股定理,OC=
22+32
=
13

则sin∠COD=
h
CO
=
3
13

解得h最大=
3
13
×
121
24
=
121
13
104
点评:本题是二次函数综合题型,主要考查了利用平移变换确定二次函数解析式,联立两函数解析式求交点坐标,等腰三角形的判定与性质,(3)判断出与OC平行的直线与抛物线只有一个交点时OC边上的高h最大是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宜宾)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2=
115°
115°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为
20
20

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足
CF
FD
=
1
3
,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:
①△ADF∽△AED;②FG=2;③tan∠E=
5
2
;④S△DEF=4
5

其中正确的是
①②④
①②④
(写出所有正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.
(1)求证:AC是⊙O的切线;
(2)若点E是
BD
的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.

查看答案和解析>>

同步练习册答案