·ÖÎö £¨1£©Ê×Ïȸù¾ÝÌâÒ⣬Éè¾ØÐÎABCDÏòÏÂƽÒƺóµãAµÄ×ø±êÊÇ£¨2£¬6-x£©£¬CµÄ×ø±êÊÇ£¨6£¬4-x£©£»È»ºó¸ù¾Ý¾ØÐÎABCDƽÒƺóA¡ä¡¢C¡äÁ½µãÇ¡ºÃͬʱÂäÔÚ·´±ÈÀýº¯ÊýµÄͼÏóÉÏ£¬¿ÉµÃ2£¨6-x£©=6£¨4-x£©=k£¬¾Ý´ËÇó³öx£¬¼´¿ÉÇó³ö¾ØÐÎƽÒƺóµãAµÄ×ø±ê£¬´úÈë·´±ÈÀýº¯ÊýµÄ½âÎöʽÇó³ökµÄÖµ£¬¼´¿ÉÇó³ö·´±ÈÀýº¯Êý½âÎöʽ£®
£¨2£©Ê×ÏÈ·Ö±ðÇó³öµ±µãEºÍµãA¡äÖغÏʱ£¬µ±µãFºÍµãD¡äÖغÏʱ£¬¾ØÐÎƽÒÆʱ¼ä¸÷ÊǶàÉÙ£»È»ºó·ÖÁ½ÖÖÇé¿ö£º¢Ù1£¼t¡Ü3£»¢Ú3£¼t£¼5ʱ£¬·ÖÀàÌÖÂÛ£¬Çó³öSÓëtµÄº¯Êý¹Øϵʽ¼´¿É£®
£¨3£©Ê×ÏÈÉè´ËʱEFµÄÖ±Ïß½âÎöʽÊÇy=k¡äx+b£¬Çó³öµãEµÄ×ø±êÊǶàÉÙ£¬ÔٰѵãEµÄ×ø±ê´úÈëEFµÄÖ±Ïß½âÎöʽ£¬Åжϳök¡ä¡¢bµÄ¹Øϵ£»È»ºó¸ù¾ÝEF¡ÍB¡äB¡å£¬EB¡å¡ÍFB¡å£¬Çó³ök¡äµÄÖµ£¬½ø¶øÇó³öbµÄÖµ£¬È·¶¨³ö´ËʱEFµÄÖ±Ïß½âÎöʽ¼´¿É£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬¿ÉµÃ
B£¨2£¬4£©£¬C£¨6£¬4£©£¬D£¨6£¬6£©£¬
ÏÔÈ»£¬Æ½ÒƺóA¡ä¡¢C¡äÁ½µãÇ¡ºÃͬʱÂäÔÚ·´±ÈÀýº¯ÊýµÄͼÏóÉÏ£¬
Éè¾ØÐÎABCDÏòÏÂƽÒƾàÀëΪa£¬
ÔòµãA¡ä£¨2£¬6-a£©£¬µãC¡ä£¨6£¬4-a£©£¬
¡ßµãA¡ä£¬C¡äÔÚ·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏóÉÏ£¬
¡à2£¨6-a£©=6£¨4-a£©£¬
½âµÃa=3£¬
¡à¾ØÐÎƽÒƺóA¡äµÄ×ø±êÊÇ£¨2£¬3£©£¬
¡àk=2£¨6-x£©=6£¨4-x£©=k£¬
ÕûÀí£¬¿ÉµÃ4x=12£¬
½âµÃ£ºx=3£¬
°Ñx=2£¬y=3´úÈë·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬
¿ÉµÃ£ºk=2¡Á3=6£¬
¡à·´±ÈÀýº¯ÊýµÄ½âÎöʽÊÇy=$\frac{6}{x}$£»
£¨2£©µ±µãEºÍµãA¡äÖغÏʱ£¬
µãEµÄ×Ý×ø±êÊÇ£ºy=6¡Â2=3£¬
¾ØÐÎƽÒÆʱ¼ätΪ£º
£¨6-3£©¡Â1
=3¡Â1
=3£¨Ã룩£»
µ±µãFºÍµãD¡äÖغÏʱ£¬
µãFµÄ×Ý×ø±êÊÇ£ºy=6¡Â6=1£¬
¾ØÐÎƽÒÆʱ¼ätΪ£º
£¨6-1£©¡Â1
=5¡Â1
=5£¨Ã룩£»
¢ÙÈçͼ1£¬µ±1£¼t¡Ü3ʱ£¬£¬
B¡äF=$\frac{6}{4-t}$-2=$\frac{2t-2}{4-6}$£¬
B¡äE=2-£¨6-3-t£©
=t-1
¡àS=$\frac{1}{2}¡ÁB¡äF¡ÁB¡äE$
=$\frac{1}{2}£¨t-1£©¡Á\frac{2t-2}{4-t}$
=$\frac{{£¨t-1£©}^{2}}{4-t}$
¢ÚÈçͼ2£¬µ±3£¼t£¼5ʱ£¬£¬
ED¡ä=6-$\frac{6}{6-t}$=$\frac{30-6t}{6-t}$£¬
D¡äF=6-t-1=5-t£¬
¡àS=2¡Á4-$\frac{1}{2}¡Á\frac{30-6t}{6-t}¡Á£¨5-t£©$
=$\frac{{3£¨5-t£©}^{2}}{6-t}$
×ÛÉÏ£¬¿ÉµÃS=$\left\{\begin{array}{l}{\frac{{£¨t-1£©}^{2}}{4-t}£¬£¨1£¼t¡Ü3£©}\\{\frac{{3£¨5-t£©}^{2}}{6-t}£¬£¨3£¼t£¼5£©}\end{array}\right.$£®
£¨3£©Èçͼ3£¬£¬
ÉèµãB¡ä¹ØÓÚEFµÄ¶Ô³ÆµãÊÇB¡å£¬´ËʱEFµÄÖ±Ïß½âÎöʽÊÇy=k¡äx+b£¬
µãEµÄ×ø±êÊÇ£¨2£¬$\frac{6}{2}$£©£¬¼´£¨2£¬3£©£¬
°Ñ£¨2£¬3£©´úÈëy=k¡äx+b£¬
¿ÉµÃ2k¡ä+b=3¡£¨1£©£»
EFÓëy=$\frac{k}{x}$µÄÁ½¸ö½»µãÊÇE¡¢F£¬E£¨2£¬3£©£¬
ÉèFµãµÄ×ø±êÊÇ£¨x£¬y£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=\frac{6}{x}}\\{y=k¡äx+b}\end{array}\right.$£¬
¿ÉµÃk¡äx2+bx-6=0£¬
¡à2x=-$\frac{6}{k¡ä}$£¬
½âµÃx=$-\frac{3}{k¡ä}$£¬y=$\frac{6}{-\frac{3}{k¡ä}}=-2k¡ä$£¬
¼´FµãµÄ×ø±êÊÇ£¨-$\frac{k¡ä}{3}£¬-2k¡ä$£©£¬BµãµÄ×ø±êÊÇ£¨2£¬-2k¡ä£©£»
ÉèB¡åµÄ×ø±êÊÇ£¨m£¬-2k¡ä+2£©£¬
Ôò$\frac{£¨2-2k¡ä£©-£¨-2k¡ä£©}{m-2}•k¡ä=-1$£¬
½âµÃm=2-2k¡ä£¬
¼´B¡åµÄ×ø±êÊÇ£¨2-2k¡ä£¬2-2k¡ä£©£¬
¡ßEB¡å¡ÍFB¡å£¬
¡à$\frac{3-£¨2-2k¡ä£©}{2-£¨2-2k¡ä£©}•\frac{£¨2-2k¡ä£©-£¨2k¡ä£©}{£¨2-2k¡ä£©+\frac{3}{k¡ä}}=-1$£¬
ÕûÀí£¬¿ÉµÃk¡ä2-2k¡ä-2=0£¬
½âµÃk¡ä=$1¡À\sqrt{3}$£¬
¡ßk¡ä£¼0£¬
¡àk¡ä=1-$\sqrt{3}$£¬
¡àb=3-2£¨1-$\sqrt{3}$£©=1$+2\sqrt{3}$£¬
¡àEFµÄÖ±Ïß½âÎöʽÊÇ£º
y=£¨1-$\sqrt{3}$£©x$+£¨1+2\sqrt{3}£©$£®
µãÆÀ £¨1£©´ËÌâÖ÷Òª¿¼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌ⣬Óôý¶¨ÏµÊý·¨Çó·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬¿¼²éÁË·ÖÎöÍÆÀíÄÜÁ¦£¬¿¼²éÁË·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Óã¬ÒªÊìÁ·ÕÆÎÕ£®
£¨2£©´ËÌ⻹¿¼²éÁ˾ØÐεÄÐÔÖÊ¡¢Æ½ÒƵÄÐÔÖʵÄÓ¦Óã¬ÒÔ¼°Èý½ÇÐεÄÃæ»ýµÄÇ󷨣¬ºÍÖ±ÏߵĽâÎöʽµÄÇ󷨣¬ÒªÊìÁ·ÕÆÎÕ£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\sqrt{2}$ | B£® | ¡À$\sqrt{2}$ | C£® | $\root{3}{2}$ | D£® | -$\root{3}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com