精英家教网 > 初中数学 > 题目详情
(2013•台湾)如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:
(甲) 连接BD、CE,两线段相交于P点,则P即为所求
(乙) 先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.
对于甲、乙两人的作法,下列判断何者正确?(  )
分析:求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.
解答:
解:甲正确,乙错误,
理由是:如图,∵正五边形的每个内角的度数是
(5-2)×180°
5
=108°,AB=BC=CD=DE=AE,
∴∠DEC=∠DCE=
1
2
×(180°-108°)=36°,
同理∠CBD=∠CDB=36°,
∴∠ABP=∠AEP=108°-36°=72°,
∴∠BPE=360°-108°-72°-72°=108°=∠A,
∴四边形ABPE是平行四边形,即甲正确;

∵∠BAE=108°,
∴∠BAM=∠EAM=54°,
∵AB=AE=AP,
∴∠ABP=∠APB=
1
2
×(180°-54°)=63°,∠AEP=∠APE=63°,
∴∠BPE=360°-108°-63°-63°≠108°,
即∠ABP=∠AEP,∠BAE≠∠BPE,
∴四边形ABPE不是平行四边形,即乙错误;
故选C.
点评:本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台湾)如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台湾)如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台湾)如图,
AB
是半圆,O为AB中点,C、D两点在
AB
上,且AD∥OC,连接BC、BD.若
CD
=62°,则
AD
的度数为何?(  )

查看答案和解析>>

同步练习册答案