【题目】如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.
(1)求证:D是BC的中点;
(2)若DE=3,BD﹣AD=2,求⊙O的半径;
(3)在(2)的条件下,求弦AE的长.
【答案】
(1)证明:∵AB是圆O的直径,
∴AD⊥BC,
∵AB=AC,
∴BD=DC
(2)解:∵AB=AC,
∠B=∠C,
∵∠B=∠E,
∴∠E=∠C,
∴BD=DC=DE=3,
∵BD﹣AD=2,
∴AD=1,
在RT△ABD中,AB= = ,
∴⊙O的半径为
(3)解:∵AB=AC= ,BD=DC=3,
∴BC=6,
∵∠B=∠E,∠C=∠C,
∴△EDC∽△BAC,
∵ACEC=DCBC,
∴ EC=3×6,
∴EC= ,
∴AE=EC﹣AC= ﹣ =
【解析】(1)根据圆周角定理求得AD⊥BC,根据等腰三角形三线合一的性质即可证得结论;(2)先求得∠E=∠C,根据等角对等边求得BD=DC=DE=3,进而求得AD=1,然后根据勾股定理求得AB,即可求得圆的半径;(3)根据题意得到AC= ,BC=6,DC=3,然后根据割线定理即可求得EC,进而求得AE.
【考点精析】掌握等腰三角形的性质和圆周角定理是解答本题的根本,需要知道等腰三角形的两个底角相等(简称:等边对等角);顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接OC、BC、CE.
(1)求证:CD是⊙O的切线;
(2)若圆O的直径等于2,填空: ①当AD=时,四边形OADC是正方形;
②当AD=时,四边形OECB是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3 000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
成绩x/分 | 频数/人 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根据所给信息,解答下列问题:
(1)m=_________,n=_________;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在_________分数段;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年3月27日是全国中小学安全教育日,为了让学生了解安全知识,增强安全意识,某校举行了一次“安全知识竞赛”.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩为样本,绘制了下列两幅统计图(说明:A级:90~100分;B级:75~89分;C级:60~74分;D级:60分以下).请结合图中提供的信息,解答下列问题:
(1)本次调查共抽取了多少名学生?
(2)扇形统计图中C级所在的扇形的圆心角度数是______;
(3)请把条形统计图补充完整;
(4)若该校共有2000名学生,请你估计安全知识竞赛中A级和B级的学生一共有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,
(1)试判断DG与BC的位置关系,并说明理由.
(2)若∠A=70°,∠B=40°,求∠AGD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级数学兴趣小组的同学调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图。依据图中信息,解答下列问题:
(1)接受这次调查的家长共有 人;
(2)补全条形统计图;
(3)在扇形统计图中,“很赞同”的家长占被调查家长总数的百分比是 ;
(4)在扇形统计图中,“不赞同”的家长部分所对应扇形的圆心角度数是 度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com