精英家教网 > 初中数学 > 题目详情
(2013•龙岗区模拟)如图,四边形ACDE、BAFG是以△ABC的边AC、AB为边向△ABC外所作的正方形.
求证:(1)EB=FC.
(2)EB⊥FC.
分析:(1)根据正方形的性质可得AB=AF,AC=AE,∠BAF=∠CAE=90°,然后求出∠BAE=∠CAF,再利用“边角边”证明△ABE和△AFC全等,根据全等三角形对应边相等可得EB=CF;
(2)根据全等三角形对应角相等可得∠AEB=∠ACF,连接CE,设EB、CF相交于O,然后求出∠OEC+∠OCE=90°,再求出∠COE=90°,然后根据垂直的定义即可得证.
解答:证明:(1)∵四边形ACDE、BAFG都是正方形,
∴AB=AF,AC=AE,∠BAF=∠CAE=90°,
∴∠BAF+∠BAC=∠CAE+∠BAC,
即∠BAE=∠CAF,
在△ABE和△AFC中,
AB=AF
∠BAE=∠CAF
AC=AE

∴△ABE≌△AFC(SAS),
∴EB=FC;

(2)∵△ABE≌△AFC,
∴∠AEB=∠ACF,
连接CE,设EB、CF相交于O,
则∠OEC+∠OCE=∠OEC+∠ACE+∠BEA=∠ACE+∠AEC=90°,
在△OCE中,∠COE=180°-(∠OEC+∠OCE)=180°-90°=90°,
∴EB⊥FC.
点评:本题考查了正方形的四条边都相等,四个角都是直角的性质,全等三角形的判定与性质,比较简单,求出∠BAE=∠CAF是证明三角形全等的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•龙岗区模拟)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
(1)甲、乙两种套房每套提升费用各多少万元?
(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?那一种方案的提升费用最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•龙岗区模拟)下列命题中正确的个数是(  )
①连接对角线相等且互相垂直的四边形的中点,所得到的图形是正方形
②对角线相等且互相垂直的四边形是正方形
③垂直于半径的直线是圆的切线;
④平分弦的直径垂直于弦.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•龙岗区模拟)在矩形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F,若G是EF的中点,则∠BDG的正切值为
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•龙岗区模拟)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1560万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)若该县的A类学校不超过9所,则B类学校至少有多少所?
(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于75万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?

查看答案和解析>>

同步练习册答案