精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中(如图),已知二次函数y=x2+bx+c的图象经过点A(0,3)和点B(3,0),其顶点记为点C.
(1)确定此二次函数的解析式,并写出顶点C的坐标;
(2)将直线CB向上平移3个单位长度,求平移后直线l的解析式;
(3)在(2)的条件下,能否在直线上l找一点D,使得以点C、B、D、O为顶点的四边形是等腰梯形.若能,请求出点D的坐标;若不能,请说明理由.
(1)把A(0,3)和B(3,0),代入y=x2+bx+c,
得:
c=3
9+3b+c=0

解得:
b=-4
c=3

所以,所求二次函数的解析式为:y=x2-4x+3
所以,顶点C的坐标为(2,-1)

(2)由待定系数法可求得直线BC的解析式为:y=x-3,
所以,直线l的解析式为:y=x

(3)能.
由直线lBC,即ODBC,可知:
若四边形CBDO为等腰梯形,则只能BD=CO,且BC≠DO
∵点D为直线l:y=x上的一点
∴设D(x,x),则可得:
(3-x)2+(0-x)2
=
(2-0)2+(-1-0)2

解得:x1=1,x2=2经检验,x1=1,x2=2都是方程①的根
∴D(1,1)或D(2,2)
但当取D(1,1)时,四边形CBDO为平行四边形,不合题意,舍去
若四边形CBOD为等腰梯形,则只能BO=CD,且BC≠DO
同理可得:D(-1,-1)或D(2,2)
但当取D(-1,-1)时,四边形CBOD为平行四边形,不合题意,舍去
故所求的点D的坐标为(2,2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合)
(1)求点A、E的坐标;
(2)若y=-
6
3
7
x2+bx+c过点A、E,求抛物线的解析式;
(3)连接PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
2
x2-mx+2m-
7
2

(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.
(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A、B两点,并与它的对称轴交于点D.
①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;
②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M、N为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线经过坐标原点O及A(-2
3
,0),其顶点为B(m,3),C是AB中点,点E是直线OC上的一个动点(点E与点O不重合),点D在y轴上,且EO=ED.
(1)求此抛物线及直线OC的解析式;
(2)当点E运动到抛物线上时,求BD的长;
(3)连接AD,当点E运动到何处时,△AED的面积为
3
3
4
?请直接写出此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,半径分别为3
3
3
的⊙O1和⊙O2外切于原点O,在x轴上方的两圆的外公切线AB与⊙O1和⊙O2分别切于点A、B,直线AB交y轴于点C.O2D⊥O1A于点D.
(1)求∠O1O2D的度数;
(2)求点C的坐标;
(3)求经过O1、C、O2三点的抛物线的解析式;
(4)在抛物线上是否存在点P,使△PO1O2为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知⊙P的半径为3,圆心P在抛物线y=
1
2
x2上运动,当⊙P与x轴相切时,圆心P的坐标为(  )
A.(
6
,3)
B.(
3
,3)
C.(
6
,3)或(-
6
,3)
D.(
3
,3)或(-
3
,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.
(1)求证:PD是⊙O的切线;
(2)若⊙O的半径为4
3
,PC=8
3
,设OC=x,PD2=y.
①求y关于x的函数关系式;
②当x=
3
时,求tanB的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)若该专卖店销售这种核桃要想平均每天获利2240元,每千克核桃应降价多少元?
(2)在(1)问的条件下,平均每天获利不变,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
(3)写出每天总利润y与降价x元的函数关系式,为了使每天的利润最大,应降价多少元?

查看答案和解析>>

同步练习册答案