精英家教网 > 初中数学 > 题目详情
如果∠α是等腰直角三角形的一个锐角,则cosα的值是(  )
A、
1
2
B、
2
2
C、1
D、
2
分析:根据等腰直角三角形的特点求出∠α的度数,再由特殊角的三角函数值求解即可.
解答:解:∵∠α是等腰直角三角形的一个锐角,∴∠α=45°,
∴cosα=cos45°=
2
2

故选:B.
点评:本题比较简单,考查的是等腰直角三角形的性质及特殊角的三角函数值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.
(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,方格棋盘中放入3枚棋子(2,3),(6,3),(4,5),这三枚旗子构成的图形是
等腰直角三角形

你能不能再放一枚棋子,使它与原来的三枚棋子组成平行四边形?如果能,请说出放在什么位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是
等腰
等腰
三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线三角形系数”.
(1)若抛物线三角形系数为[-1,b,0]的“抛物线三角形”是等腰直角三角形,求b的值;
(2)若△OAB是“抛物线三角形”,其中点B为顶点,抛物线三角形系数为[-2,2m,0],其中m>0;且四边形ABCD是以原点O为对称中心的矩形,求出过O、C、D三个点的抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图(1)△ABC、△ADE都是等腰直角三角形,连接BD、CE.
(1)求证:△BAD≌△CAE;
(2)如果△ADE绕点A逆时针旋转,恰好点C、D、E三点在同一直线上(如图(2)所示).试猜想线段BD和CE有什么关系,并证明你的猜想.

查看答案和解析>>

同步练习册答案