精英家教网 > 初中数学 > 题目详情
如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.

(1)判断四边形ADEF的形状,并证明你的结论;
(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?
(1)由题意易得△BDE≌△BAC,则可得DE=AC=AF,同理可证EF=AB=AD,即可证得结论;(2)AB=AC时为菱形,∠BAC=150º时为矩形.

试题分析:(1)由题意易得△BDE≌△BAC,则可得DE=AC=AF,同理可证EF=AB=AD,即可证得结论;
(2)AB=AC时,可得ADEF的邻边相等,所以ADEF为菱形,AEDF要是矩形,则∠DEF=90°,由∠DEF=∠BED+∠BEC+∠CEF,可推出∠BAC=150°时为矩形.
解:(1)四边形ADEF为平行四边形,
∵△ABD和△EBC都是等边三角形,
∴BD=AB,BE=BC;
∵∠DBA=∠EBC=60°,
∴∠DBA-∠EBA=∠EBC-∠EBA
∴∠DBE=∠ABC;
∴△BDE≌△BAC
∴DE=AC=AF
同理可证:△ECF≌△BCA,
∴EF=AB=AD
∴ADEF为平行四边形;
(2)AB=AC时,?ADEF为菱形,当∠BAC=150°时?ADEF为矩形.
理由是:∵AB=AC,
∴AD=AF.
∴?ADEF是菱形.
∴∠DEF=90°
=∠BED+∠BEC+∠CEF
=∠BCA+60°+∠CBA
=180-∠BAC+60°
=240°-∠BAC,
∴∠BAC=150°,
∵∠DAB=∠FAC=60°,
∴∠DAF=90°,
∴平行四边形ADEF是矩形.
点评:特殊四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,?ABCD的两条对角线AC和BD相交于点O,并且BD=4,AC=6,BC=
(1)AC与BD有什么位置关系?为什么?
(2)四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:

(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是某地下商业街的入口,数学课外兴趣小组同学打算运用所学知识测量侧面支架最高点E到地面距离EF.经测量,支架立柱BC与地面垂直,即∠BCA=90°,且BC=1.5cm,点F、A、C在同一条水平线上,斜杆AB与水平线AC夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架边BE与AB夹角∠EBD=60°,又测得AD=1m。请你求出该支架边BE及顶端E到地面距离EF长度。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在□中,已知平分边于点,则等于
A.2cm B.4cmC.6cmD.8cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F.求证:DF=DC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,ABCD的周长为l6cm,对角线AC与BD相交于点O,交AD于E,连接CE,则△DCE的周长为(  )
A.4cmB.6cmC.8cmD.10cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,平行四边形ABCD的周长是18cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是 _________ cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知矩形纸片ABCD中,AB=1,BC=2,将该纸片叠成一个平面图形,折痕EF不经过A点(E、F是该矩形边界上的点),折叠后点A落在A处,给出以下判断:

(1)当四边形ACDF为正方形时,EF=
(2)当EF=时,四边形ACDF为正方形
(3)当EF=时,四边形BACD为等腰梯形;
(4)当四边形BACD为等腰梯形时,EF=
其中正确的是            (把所有正确结论序号都填在横线上)。

查看答案和解析>>

同步练习册答案