精英家教网 > 初中数学 > 题目详情
4.若关于x的分式方程$\frac{4m}{x-7}$+$\frac{2}{7-x}$=2的解为非负数,则m的取值范围为(  )
A.m>-3B.m≥-3C.m>-3且m≠$\frac{1}{2}$D.m≥-3且m≠$\frac{1}{2}$

分析 根据题意可以得到分式方程的解,由关于x的分式方程$\frac{4m}{x-7}$+$\frac{2}{7-x}$=2的解为非负数,可以得到关于m的不等式,从而可以求得m的取值范围.

解答 解:$\frac{4m}{x-7}$+$\frac{2}{7-x}$=2
方程两边同乘以x-7,得
4m-2=2(x-7),
解得,x=2m+6,
∴2m+6≥0,2m+6≠7,
解得,m≥-3,m≠-$\frac{1}{2}$,
故选D.

点评 本题考查分式方程的解、解一元一次不等式,解题的关键是明确它们各自的解答方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.下列说法:
①实数和数轴上的点是一一对应的;
②无理数是开方开不尽的数;
③负数没有立方根;
④16的平方根是±4,用式子表示是$\sqrt{16}$=±4;
⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,
其中错误的是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知x为$\sqrt{5}$的小数部分,解下列各题
(1)x=$\sqrt{5}$-2;
(2)($\sqrt{5}$+3)(x-1)的值为-4;
(3)x2+4x+2014的值为2015;
(4)求x3+3x2-5x+2016的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:|-3|+(π-3)0-$\sqrt{(-2)^{2}}$+$\root{3}{(-2)^{3}}$-$\root{3}{125}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线C1的函数解析式为y=ax2+bx-3a(b<0),若抛物线C1经过点(0,-3),方程ax2+bx-3a=0的两根为x1,x2,且|x1-x2|=4.
(1)求抛物线C1的顶点坐标.
(2)已知实数x>0,请证明:x+$\frac{1}{x}$≥2,并说明x为何值时才会有x+$\frac{1}{x}$=2.
(3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90°,m>0,n<0.请你用含有m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:
(1)(-1.1xmy3m2
(2)(-0.25)11×411
(3)(-a3b62-(-a2b43
(4)-(-xmy)3•(xyn+12
(5)(-2x2y3+8(x22•(-x2)•(-y3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.先化简,再求值:($\frac{1}{{x}^{2}-2x}$-$\frac{1}{x}$)÷$\frac{x-3}{{x}^{2}-4}$,其中-1<x<4,且x为整数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知,如图,AD∥BC,AE平分∠BAD,BE平分∠ABC,求证:AD+BC=AB.
提示;解决这类问题有两种思路:
(1)在AB上取AF=AD,然后通过证明△BFE≌△BCE,得BF=BC,这是截长法.
(2)延长AD交BE的延长线于G,先证△AGE≌△ABE,后证△DGE≌△CBE,即可证得AD+BC=AB,这是补短法.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数.
(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.

查看答案和解析>>

同步练习册答案