【题目】某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.
(1)求该商店3月份这种商品的售价是多少元?
(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?
【答案】(1)该商店3月份这种商品的售价是40元;(2)该商店4月份销售这种商品的利润是990元.
【解析】
(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;
(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.
(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,
根据题意得:
,
解得:x=40,
经检验,x=40是原分式方程的解.
答:该商店3月份这种商品的售价是40元.
(2)设该商品的进价为y元,
根据题意得:(40﹣a)×=900,
解得:a=25,
∴(40×0.9﹣25)×=990(元).
答:该商店4月份销售这种商品的利润是990元.
科目:初中数学 来源: 题型:
【题目】阅读下列一段文字,然后回答下列问题.
已知在平面内有两点P1 x1,y1 ,P1 x2,y2 其两点间的距离P1P2 = ,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|x2 x1|或|y2 y1|.
(1)已知 A (1,4)、B (-3,5),试求 A.、B两点间的距离;
(2)已知 A、B在平行于 y轴的直线上,点 A的纵坐标为-8,点 B的纵坐标为-1,试求 A、B两点的距 离;
(3)已知一个三角形各顶点坐标为 D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形状吗?说明理由:
(4)在(3)的条件下,平面直角坐标系中,在 x轴上找一点 P,使 PD+PF的长度最短,求出点 P的坐 标以及 PD+PF的最短长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017怀化,第10题,4分)如图,A,B两点在反比例函数的图象上,C,D两点在反比例函数的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则的值是( )
A. 6 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的是
A. ①② B. ①③ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足是D.
(1)求证:∠2=∠1+∠C;
(2)若ED∥BC,∠ABD=28°,求∠ADE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,为测量池塘宽度AB,可在池塘外的空地上取任意一点O,连接AO,BO,并分别延长至点C,D,使OC=OA,OD=OB,连接CD
(1)求证:AB=CD;
(2)如图2,受地形条件的影响,于是采取以下措施:延长AO至点C,使OC=OA,过点C作AB的平行线CE,延长BO至点F,连接EF,测得∠CEF=140°,∠OFE=110°,CE=11m,EF=10m,请直接写出池塘宽度AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝.其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线、与半圆相切,上、下桥斜面的坡度,桥下水深米.水面宽度米.设半圆的圆心为,直径在坡角顶点、的连线上.求从点上坡、过桥、下坡到点的最短路径长.(参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】能够判别一个四边形是菱形的条件是( )
A. 一组对角相等且一条对角线平分这组对角 B. 对角线互相平分
C. 对角线互相垂直且相等 D. 对角线相等且互相平分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,小明按如下步骤作图:
(1)以点O为圆心,适当长为半径画弧,交OA于D,交OB于点E
(2)分别以点D、E为圆心,大于的长为半径画弧,两弧在的内部相交于点C
(3)画射线OC
根据上述作图步骤,下列结论正确的有( )个
①射线OC是的平分线;②点O和点C关于直线DE对称;③射线OC垂直平分线段DE;④.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com