精英家教网 > 初中数学 > 题目详情
精英家教网如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的个数是(  )
①△BDF是等腰三角形;②DE=
1
2
BC;
③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.
A、1B、2C、3D、4
分析:根据菱形的判定和等腰三角形的判定,采用排除法,逐条分析判断.
解答:解:①∵DE∥BC,
∴∠ADE=∠B,∠EDF=∠BFD,
又∵△ADE≌△FDE,
∴∠ADE=∠EDF,AD=FD,AE=CE,
∴∠B=∠BFD,
∴△BDF是等腰三角形,故①正确;
同理可证,△CEF是等腰三角形,
∴BD=FD=AD,CE=FE=AE,
∴DE是△ABC的中位线,
∴DE=
1
2
BC,故②正确;
∵∠B=∠BFD,∠C=∠CFE,
又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,
∴∠BDF+∠FEC=2∠A,故④正确.
而无法证明四边形ADFE是菱形,故③错误.
所以一定正确的结论个数有3个,
故选C.
点评:菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:
①定义;
②四边相等;
③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的是
 

①△BDF是等腰三角形;②DE=
12
BC
;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将三角形纸片ABC沿EF折叠可得图2(其中EF∥BC),已知图2的面积与原三角形的面积之比为3:4,且阴影部分的面积为8平方厘米,则原三角形面积为
 
平方厘米.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的个数是(  )
①△BDF是等腰三角形;②DE=
1
2
BC;③∠BDF+∠FEC=2∠A;④四边形ADFE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将三角形纸片ABC沿DE折叠,当点A落在四边形BDEC的外部时,∠1=72°,∠2=26°,则∠A=
23
23
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的个数是(  )
①△CEF是等腰三角形           ②四边形ADFE是菱形
③四边形BFED是平行四边形        ④∠BDF+∠CEF=2∠A.

查看答案和解析>>

同步练习册答案