精英家教网 > 初中数学 > 题目详情
8.四张完全相同的卡片上,分别画有圆、正方形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是中心对称图形的概率为(  )
A.1B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 根据题意列出相应的表格,得到所有等可能出现的情况数,进而找出满足题意的情况数,即可求出所求的概率.

解答 解:列表如下:

1234
1---(2,1)(3,1)(4,1)
2(1,2)---(3,2)(4,2)
3(1,3)(2,3)---(4,3)
4(1,4)(2,4)(3,4)---
其中1表示圆,2表示正方形,3表示等边三角形,4表示线段,
所有等可能情况数为12种,其中两张卡片上图形都是中心对称图形的有6种,
∴卡片上画的恰好都是中心对称图形的概率为$\frac{6}{12}$=$\frac{1}{2}$,
故选:C.

点评 此题考查了列表法与树状图法,以及中心对称图形,用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费1.8元,超计划部分每吨按2.0元收费.
(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;
(2)某月该单位用水3200吨时,应交水费多少元?
(3)若某月该单位缴纳水费9400元,则该单位用水多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,矩形ABCD中,点A(1,1)、B(3,1),C(3,6),反比例函数y=$\frac{m}{x}$(x>0)的图象经过点D,且与BC交于点P.
(1)直接写出点D的坐标和m的值;
(2)求直线DP的解析式;
(3)求直线DP与坐标轴交于E、F点,求△OEF与△DPC面积的之比;
(4)若点M在矩形ABCD的边上,且S△DPM=S△DPC,直接写出点M的坐标为(1,2)或($\frac{3}{2}$,1).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.在平面直角坐标系中,点A、B的坐标分别为(2,0),(4,0),点C的坐标为(m,$\sqrt{3}$m)(m为非负数),则CA+CB的最小值是(  )
A.2B.4C.6D.2$\sqrt{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知点M(1,1),N(1,-1),经过某点且平行于OM、ON或MN的直线,叫该点关于△OMN的“关联线”.
例如,如图1,点P(3,0)关于△OMN的“关联线”是:y=x+3,y=-x+3,x=3.
(1)在以下3条线中,是点(4,3)关于△OMN的“关联线”(填出所有正确的序号;
①x=4;②y=-x-5;③y=x-1.
(2)如图2,抛物线y=$\frac{1}{4}$(x-m)2+n经过点A(4,4),顶点B在第一象限,且B点有一条关于△OMN的“关联线”是y=-x+5,求此抛物线的表达式;
(3)在(2)的条件下,过点A作AC⊥x轴于点C,点E是线段AC上除点C外的任意一点,连接OE,将△OCE沿着OE折叠,点C落在点C′的位置,当点C′在B点关于△OMN的平行于MN的“关联线”上时,满足(2)中条件的抛物线沿对称轴向下平移多少距离,其顶点落在OE上?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若二次函数y=ax2+1的图象经过点(-2,0),则关于x的方程a(x-2)2+1=0的实数根为(  )
A.x1=0,x2=4B.x1=-2,x2=6C.x1=$\frac{3}{2}$,x2=$\frac{5}{2}$D.x1=-4,x2=0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是(  )
A.20cmB.18cmC.2$\sqrt{5}$cmD.3$\sqrt{2}$cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧$\widehat{CD}$于点P,Q,且点P,Q在AB异侧,连接OP.
(1)求证:AP=BQ;
(2)当BQ=4$\sqrt{3}$时,求$\widehat{QD}$的长(结果保留π);
(3)若△APO的外心在扇形COD的内部,求OC的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在函数y=$\frac{1}{2-3x}$中,自变量x的取值范围是x≠$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案