【题目】定义:如图1,抛物线 与 轴交于A,B两点,点P在抛物线上(点P与A,B两点不重合),如果△ABP的三边满足 ,则称点P为抛物线 的勾股点。
(1)直接写出抛物线 的勾股点的坐标;
(2)如图2,已知抛物线C: 与 轴交于A,B两点,点P(1, )是抛物线C的勾股点,求抛物线C的函数表达式;
(3)在(2)的条件下,点Q在抛物线C上,求满足条件 的点Q(异于点P)的坐标
【答案】
(1)
解:勾股点的坐标为(0,1)
(2)
解:抛物线y=ax2+bx(a≠0)过原点(0,0),即A(0,0),
如图作PG⊥x轴于点G,连接PA,PB,
∵点P(1,),
∴ AG=1,PG=,
∴PA=2,tan∠PAB=,
∴∠PAB=60°,
∴在Rt△PAB中,AB==4,
∴点B(4,0),
设y=ax(x-4),当x=1时,y=,
解得a=-,
∴y=-x(x-4)=-x2+x.
(3)
解:① 当点Q在x轴上方,由S△ABQ=S△ABP,易知点Q的纵坐标为,
∴-x2+x=,解得x1=3,x2=1(不合题意,舍去),
∴Q(3,),
②当点Q在x轴下方,由S△ABQ=S△ABP,易知点Q的纵坐标为-,
∴-x2+x=-,解得x1=2+,x2=2-,
∴Q(2+,-)Q(2-,-),
综上,满足条件的点Q有三个:Q(3,)Q(2+,-)Q(2-,-).
【解析】(1)解:y=-x2+1与x轴交于A(-1,0),B(1,0),与y轴交于P(0,1),
∴AB=2,AP=BP=,
∴AP2+BP2=AB2
∴勾股点P(0,1),
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中有等边△AOB,点O为坐标原点,OB=2,平行于x轴且与x轴的距离为1的线段CD分别交y轴、AB于点C,D.若线段CD上点P与△AOB的某一顶点的距离为,则线段PC(PC<2.5)的长为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B,C,D为矩形的四个顶点,AB=16 cm,BC=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P运动到点B停止时,点Q也随之停止运动.问几秒时点P和点Q的距离是10 cm?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。连结OD,作BE⊥CD于点E,交半圆O于点F。已知CE=12,BE=9
(1)求证:△COD∽△CBE;
(2)求半圆O的半径 的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(m,m)在第一象限,且实数m满足条件:,ABy轴于B,ACx轴于C
(1)求m的值;
(2)如图1,BE=1,过A作AF⊥AE交x轴于F,连EF,D在AO上,且AD=AE,连接ED并延长交x轴于点P,求点P的坐标;
(3)如图2,G为线段OC延长线上一点,AC=CG,E为线段OB上一动点(不与O、B重合),F为线段CE的中点,若BF⊥FK交AG于K,延长BF、AC交于M,连接KM.请问∠FBK的大小是否变化?若不变,请求其值;若改变,求出变化的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(1,2),解答以下问题:
(1)请在图中建立适当的直角坐标系,并写出图书馆B位置的坐标;
(2)若体育馆位置坐标为C(-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,矩形纸片ABCD的边长分别为a、b(a<b),点M、N分别为边AD、BC上两点(点A、C除外),连接MN.
(1)如图②,分别沿ME、NF 将MN两侧纸片折叠,使点A、C分别落在MN上的A′、C′处,直接写出ME与FN的位置关系;
(2)如图③,当MN⊥BC 时,仍按(1)中的方式折叠,请求出四边形A′EBN与四边形C′FDM 的周长(用含a的代数式表示),并判断四边形A′EBN与四边形C′FDM周长之间的数量关系;
(3)如图④,若对角线BD与MN交于点O,分别沿BM、DN将MN两侧纸片折叠,折叠后,点A、C恰好都落在点O处,并且得到的四边形BNDM是菱形,请你探索a、b之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD的面积为300cm2 , 长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm2的圆(π取3),请通过计算说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com