分析 根据正方形的性质,运用SAS证明△ABF≌△DAE,再由全等三角形的性质可得出结论.
解答 解:∵四边形ABCD是正方形,
∴AB=AD,∠BAF=∠ADE=90°.
∵CE=DF,
∴AF=DE.
在△ABF与△DAE中,
∵$\left\{\begin{array}{l}{AB=AD}\\{∠BAF=∠ADE}\\{AF=DE}\end{array}\right.$,
∴△ABF≌△DAE(SAS).
∴AE=BF;
∴∠AFB=∠AED.
∵∠AED+∠DAE=90°,
∴∠AFB+∠DAE=90°,
∴∠AOF=90°,即AE⊥BF.
∵∠BAF=90°,
∴∠AFB+∠ABF=90°.
∵∠ABF+∠BAM=90°,
∴∠BAM=∠AFM,
∴△ABM∽△FAM.
同理,△ABM∽△FBA.
故答案为:△ABM∽△FAM,△ABM∽△FBA.
点评 本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com